Solve for h
\left\{\begin{matrix}\\h\neq 0\text{, }&\text{unconditionally}\\h=\frac{36ks}{5}\text{, }&k\neq 0\text{ and }s\neq 0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{5h}{36s}\text{, }&s\neq 0\text{ and }h\neq 0\\k\in \mathrm{R}\text{, }&m=0\text{ and }s\neq 0\text{ and }h\neq 0\end{matrix}\right.
Share
Copied to clipboard
hm=s\times 7.2km
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by hs, the least common multiple of s,h.
hm=7.2kms
Reorder the terms.
mh=\frac{36kms}{5}
The equation is in standard form.
\frac{mh}{m}=\frac{36kms}{5m}
Divide both sides by m.
h=\frac{36kms}{5m}
Dividing by m undoes the multiplication by m.
h=\frac{36ks}{5}
Divide \frac{36kms}{5} by m.
h=\frac{36ks}{5}\text{, }h\neq 0
Variable h cannot be equal to 0.
hm=s\times 7.2km
Multiply both sides of the equation by hs, the least common multiple of s,h.
s\times 7.2km=hm
Swap sides so that all variable terms are on the left hand side.
\frac{36ms}{5}k=hm
The equation is in standard form.
\frac{5\times \frac{36ms}{5}k}{36ms}=\frac{5hm}{36ms}
Divide both sides by 7.2sm.
k=\frac{5hm}{36ms}
Dividing by 7.2sm undoes the multiplication by 7.2sm.
k=\frac{5h}{36s}
Divide hm by 7.2sm.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}