Factor
2\left(x-\frac{-\sqrt{41}-1}{4}\right)\left(x-\frac{\sqrt{41}-1}{4}\right)
Evaluate
2x^{2}+x-5
Graph
Share
Copied to clipboard
2x^{2}+x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-5\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1-4\times 2\left(-5\right)}}{2\times 2}
Square 1.
x=\frac{-1±\sqrt{1-8\left(-5\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-1±\sqrt{1+40}}{2\times 2}
Multiply -8 times -5.
x=\frac{-1±\sqrt{41}}{2\times 2}
Add 1 to 40.
x=\frac{-1±\sqrt{41}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{41}-1}{4}
Now solve the equation x=\frac{-1±\sqrt{41}}{4} when ± is plus. Add -1 to \sqrt{41}.
x=\frac{-\sqrt{41}-1}{4}
Now solve the equation x=\frac{-1±\sqrt{41}}{4} when ± is minus. Subtract \sqrt{41} from -1.
2x^{2}+x-5=2\left(x-\frac{\sqrt{41}-1}{4}\right)\left(x-\frac{-\sqrt{41}-1}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1+\sqrt{41}}{4} for x_{1} and \frac{-1-\sqrt{41}}{4} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}