Solve for q
\left\{\begin{matrix}q=-\frac{x^{3}+18x^{2}+89x-8}{80xy}\text{, }&x\neq 0\text{ and }y\neq 0\\q\in \mathrm{R}\text{, }&x=\sqrt[3]{\frac{8\sqrt{3507}}{9}+55}+\sqrt[3]{-\frac{8\sqrt{3507}}{9}+55}-6\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
19x^{2}+98x+80yqx=x^{2}+9x+8-x^{3}
Subtract x^{3} from both sides.
98x+80yqx=x^{2}+9x+8-x^{3}-19x^{2}
Subtract 19x^{2} from both sides.
98x+80yqx=-18x^{2}+9x+8-x^{3}
Combine x^{2} and -19x^{2} to get -18x^{2}.
80yqx=-18x^{2}+9x+8-x^{3}-98x
Subtract 98x from both sides.
80yqx=-18x^{2}-89x+8-x^{3}
Combine 9x and -98x to get -89x.
80xyq=8-89x-18x^{2}-x^{3}
The equation is in standard form.
\frac{80xyq}{80xy}=\frac{8-89x-18x^{2}-x^{3}}{80xy}
Divide both sides by 80yx.
q=\frac{8-89x-18x^{2}-x^{3}}{80xy}
Dividing by 80yx undoes the multiplication by 80yx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}