Solve for d_1
d_{1}=3f-d_{3}-d_{2}
Solve for d_2
d_{2}=3f-d_{3}-d_{1}
Share
Copied to clipboard
f=\frac{1}{3}d_{1}+\frac{1}{3}d_{2}+\frac{1}{3}d_{3}
Divide each term of d_{1}+d_{2}+d_{3} by 3 to get \frac{1}{3}d_{1}+\frac{1}{3}d_{2}+\frac{1}{3}d_{3}.
\frac{1}{3}d_{1}+\frac{1}{3}d_{2}+\frac{1}{3}d_{3}=f
Swap sides so that all variable terms are on the left hand side.
\frac{1}{3}d_{1}+\frac{1}{3}d_{3}=f-\frac{1}{3}d_{2}
Subtract \frac{1}{3}d_{2} from both sides.
\frac{1}{3}d_{1}=f-\frac{1}{3}d_{2}-\frac{1}{3}d_{3}
Subtract \frac{1}{3}d_{3} from both sides.
\frac{1}{3}d_{1}=-\frac{d_{2}}{3}-\frac{d_{3}}{3}+f
The equation is in standard form.
\frac{\frac{1}{3}d_{1}}{\frac{1}{3}}=\frac{-\frac{d_{2}}{3}-\frac{d_{3}}{3}+f}{\frac{1}{3}}
Multiply both sides by 3.
d_{1}=\frac{-\frac{d_{2}}{3}-\frac{d_{3}}{3}+f}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
d_{1}=3f-d_{3}-d_{2}
Divide f-\frac{d_{2}}{3}-\frac{d_{3}}{3} by \frac{1}{3} by multiplying f-\frac{d_{2}}{3}-\frac{d_{3}}{3} by the reciprocal of \frac{1}{3}.
f=\frac{1}{3}d_{1}+\frac{1}{3}d_{2}+\frac{1}{3}d_{3}
Divide each term of d_{1}+d_{2}+d_{3} by 3 to get \frac{1}{3}d_{1}+\frac{1}{3}d_{2}+\frac{1}{3}d_{3}.
\frac{1}{3}d_{1}+\frac{1}{3}d_{2}+\frac{1}{3}d_{3}=f
Swap sides so that all variable terms are on the left hand side.
\frac{1}{3}d_{2}+\frac{1}{3}d_{3}=f-\frac{1}{3}d_{1}
Subtract \frac{1}{3}d_{1} from both sides.
\frac{1}{3}d_{2}=f-\frac{1}{3}d_{1}-\frac{1}{3}d_{3}
Subtract \frac{1}{3}d_{3} from both sides.
\frac{1}{3}d_{2}=-\frac{d_{1}}{3}-\frac{d_{3}}{3}+f
The equation is in standard form.
\frac{\frac{1}{3}d_{2}}{\frac{1}{3}}=\frac{-\frac{d_{1}}{3}-\frac{d_{3}}{3}+f}{\frac{1}{3}}
Multiply both sides by 3.
d_{2}=\frac{-\frac{d_{1}}{3}-\frac{d_{3}}{3}+f}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
d_{2}=3f-d_{3}-d_{1}
Divide f-\frac{d_{1}}{3}-\frac{d_{3}}{3} by \frac{1}{3} by multiplying f-\frac{d_{1}}{3}-\frac{d_{3}}{3} by the reciprocal of \frac{1}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}