Evaluate
\frac{125c_{c}^{8}}{1679616}
Differentiate w.r.t. c_c
\frac{125c_{c}^{7}}{209952}
Share
Copied to clipboard
c_{c}^{8}\times \frac{1}{7776}\times \left(\frac{5}{6}\right)^{8-5}
Calculate \frac{1}{6} to the power of 5 and get \frac{1}{7776}.
c_{c}^{8}\times \frac{1}{7776}\times \left(\frac{5}{6}\right)^{3}
Subtract 5 from 8 to get 3.
c_{c}^{8}\times \frac{1}{7776}\times \frac{125}{216}
Calculate \frac{5}{6} to the power of 3 and get \frac{125}{216}.
c_{c}^{8}\times \frac{125}{1679616}
Multiply \frac{1}{7776} and \frac{125}{216} to get \frac{125}{1679616}.
\frac{\mathrm{d}}{\mathrm{d}c_{c}}(c_{c}^{8}\times \frac{1}{7776}\times \left(\frac{5}{6}\right)^{8-5})
Calculate \frac{1}{6} to the power of 5 and get \frac{1}{7776}.
\frac{\mathrm{d}}{\mathrm{d}c_{c}}(c_{c}^{8}\times \frac{1}{7776}\times \left(\frac{5}{6}\right)^{3})
Subtract 5 from 8 to get 3.
\frac{\mathrm{d}}{\mathrm{d}c_{c}}(c_{c}^{8}\times \frac{1}{7776}\times \frac{125}{216})
Calculate \frac{5}{6} to the power of 3 and get \frac{125}{216}.
\frac{\mathrm{d}}{\mathrm{d}c_{c}}(c_{c}^{8}\times \frac{125}{1679616})
Multiply \frac{1}{7776} and \frac{125}{216} to get \frac{125}{1679616}.
8\times \frac{125}{1679616}c_{c}^{8-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{125}{209952}c_{c}^{8-1}
Multiply 8 times \frac{125}{1679616}.
\frac{125}{209952}c_{c}^{7}
Subtract 1 from 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}