Solve for n
n=-\frac{x}{6}
x\neq 0
Solve for x
x=-6n
n\neq 0
Graph
Share
Copied to clipboard
n\times 800000+160000x+n\times 160000=0
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n.
960000n+160000x=0
Combine n\times 800000 and n\times 160000 to get 960000n.
960000n=-160000x
Subtract 160000x from both sides. Anything subtracted from zero gives its negation.
\frac{960000n}{960000}=-\frac{160000x}{960000}
Divide both sides by 960000.
n=-\frac{160000x}{960000}
Dividing by 960000 undoes the multiplication by 960000.
n=-\frac{x}{6}
Divide -160000x by 960000.
n=-\frac{x}{6}\text{, }n\neq 0
Variable n cannot be equal to 0.
n\times 800000+160000x+n\times 160000=0
Multiply both sides of the equation by n.
960000n+160000x=0
Combine n\times 800000 and n\times 160000 to get 960000n.
160000x=-960000n
Subtract 960000n from both sides. Anything subtracted from zero gives its negation.
\frac{160000x}{160000}=-\frac{960000n}{160000}
Divide both sides by 160000.
x=-\frac{960000n}{160000}
Dividing by 160000 undoes the multiplication by 160000.
x=-6n
Divide -960000n by 160000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}