Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-22 ab=8\times 15=120
Factor the expression by grouping. First, the expression needs to be rewritten as 8x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
-1,-120 -2,-60 -3,-40 -4,-30 -5,-24 -6,-20 -8,-15 -10,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 120.
-1-120=-121 -2-60=-62 -3-40=-43 -4-30=-34 -5-24=-29 -6-20=-26 -8-15=-23 -10-12=-22
Calculate the sum for each pair.
a=-12 b=-10
The solution is the pair that gives sum -22.
\left(8x^{2}-12x\right)+\left(-10x+15\right)
Rewrite 8x^{2}-22x+15 as \left(8x^{2}-12x\right)+\left(-10x+15\right).
4x\left(2x-3\right)-5\left(2x-3\right)
Factor out 4x in the first and -5 in the second group.
\left(2x-3\right)\left(4x-5\right)
Factor out common term 2x-3 by using distributive property.
8x^{2}-22x+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 8\times 15}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-22\right)±\sqrt{484-4\times 8\times 15}}{2\times 8}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484-32\times 15}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-22\right)±\sqrt{484-480}}{2\times 8}
Multiply -32 times 15.
x=\frac{-\left(-22\right)±\sqrt{4}}{2\times 8}
Add 484 to -480.
x=\frac{-\left(-22\right)±2}{2\times 8}
Take the square root of 4.
x=\frac{22±2}{2\times 8}
The opposite of -22 is 22.
x=\frac{22±2}{16}
Multiply 2 times 8.
x=\frac{24}{16}
Now solve the equation x=\frac{22±2}{16} when ± is plus. Add 22 to 2.
x=\frac{3}{2}
Reduce the fraction \frac{24}{16} to lowest terms by extracting and canceling out 8.
x=\frac{20}{16}
Now solve the equation x=\frac{22±2}{16} when ± is minus. Subtract 2 from 22.
x=\frac{5}{4}
Reduce the fraction \frac{20}{16} to lowest terms by extracting and canceling out 4.
8x^{2}-22x+15=8\left(x-\frac{3}{2}\right)\left(x-\frac{5}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and \frac{5}{4} for x_{2}.
8x^{2}-22x+15=8\times \frac{2x-3}{2}\left(x-\frac{5}{4}\right)
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
8x^{2}-22x+15=8\times \frac{2x-3}{2}\times \frac{4x-5}{4}
Subtract \frac{5}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
8x^{2}-22x+15=8\times \frac{\left(2x-3\right)\left(4x-5\right)}{2\times 4}
Multiply \frac{2x-3}{2} times \frac{4x-5}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
8x^{2}-22x+15=8\times \frac{\left(2x-3\right)\left(4x-5\right)}{8}
Multiply 2 times 4.
8x^{2}-22x+15=\left(2x-3\right)\left(4x-5\right)
Cancel out 8, the greatest common factor in 8 and 8.
x ^ 2 -\frac{11}{4}x +\frac{15}{8} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 8
r + s = \frac{11}{4} rs = \frac{15}{8}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{11}{8} - u s = \frac{11}{8} + u
Two numbers r and s sum up to \frac{11}{4} exactly when the average of the two numbers is \frac{1}{2}*\frac{11}{4} = \frac{11}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{11}{8} - u) (\frac{11}{8} + u) = \frac{15}{8}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{15}{8}
\frac{121}{64} - u^2 = \frac{15}{8}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{15}{8}-\frac{121}{64} = -\frac{1}{64}
Simplify the expression by subtracting \frac{121}{64} on both sides
u^2 = \frac{1}{64} u = \pm\sqrt{\frac{1}{64}} = \pm \frac{1}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{11}{8} - \frac{1}{8} = 1.250 s = \frac{11}{8} + \frac{1}{8} = 1.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.