Evaluate
8a+9b
Expand
8a+9b
Share
Copied to clipboard
6ab+12-\left(2a-3\right)\left(3b-4\right)
Use the distributive property to multiply 6 by ab+2.
6ab+12-\left(6ab-8a-9b+12\right)
Apply the distributive property by multiplying each term of 2a-3 by each term of 3b-4.
6ab+12-6ab-\left(-8a\right)-\left(-9b\right)-12
To find the opposite of 6ab-8a-9b+12, find the opposite of each term.
6ab+12-6ab+8a-\left(-9b\right)-12
The opposite of -8a is 8a.
6ab+12-6ab+8a+9b-12
The opposite of -9b is 9b.
12+8a+9b-12
Combine 6ab and -6ab to get 0.
8a+9b
Subtract 12 from 12 to get 0.
6ab+12-\left(2a-3\right)\left(3b-4\right)
Use the distributive property to multiply 6 by ab+2.
6ab+12-\left(6ab-8a-9b+12\right)
Apply the distributive property by multiplying each term of 2a-3 by each term of 3b-4.
6ab+12-6ab-\left(-8a\right)-\left(-9b\right)-12
To find the opposite of 6ab-8a-9b+12, find the opposite of each term.
6ab+12-6ab+8a-\left(-9b\right)-12
The opposite of -8a is 8a.
6ab+12-6ab+8a+9b-12
The opposite of -9b is 9b.
12+8a+9b-12
Combine 6ab and -6ab to get 0.
8a+9b
Subtract 12 from 12 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}