Solve for x_1
x_{1}=-\frac{3}{x_{3}+2}
x_{3}\neq -2
Solve for x_3
x_{3}=-2-\frac{3}{x_{1}}
x_{1}\neq 0
Share
Copied to clipboard
4x_{1}+2x_{1}x_{3}=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
\left(4+2x_{3}\right)x_{1}=-6
Combine all terms containing x_{1}.
\left(2x_{3}+4\right)x_{1}=-6
The equation is in standard form.
\frac{\left(2x_{3}+4\right)x_{1}}{2x_{3}+4}=-\frac{6}{2x_{3}+4}
Divide both sides by 4+2x_{3}.
x_{1}=-\frac{6}{2x_{3}+4}
Dividing by 4+2x_{3} undoes the multiplication by 4+2x_{3}.
x_{1}=-\frac{3}{x_{3}+2}
Divide -6 by 4+2x_{3}.
6+2x_{1}x_{3}=-4x_{1}
Subtract 4x_{1} from both sides. Anything subtracted from zero gives its negation.
2x_{1}x_{3}=-4x_{1}-6
Subtract 6 from both sides.
\frac{2x_{1}x_{3}}{2x_{1}}=\frac{-4x_{1}-6}{2x_{1}}
Divide both sides by 2x_{1}.
x_{3}=\frac{-4x_{1}-6}{2x_{1}}
Dividing by 2x_{1} undoes the multiplication by 2x_{1}.
x_{3}=-2-\frac{3}{x_{1}}
Divide -4x_{1}-6 by 2x_{1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}