Solve for x (complex solution)
x=\frac{17+\sqrt{5}i}{18}\approx 0.944444444+0.124225999i
x=\frac{-\sqrt{5}i+17}{18}\approx 0.944444444-0.124225999i
Graph
Share
Copied to clipboard
4x+54\left(x-1\right)^{2}+2\left(x-1\right)-3=0
Multiply 6 and 9 to get 54.
4x+54\left(x^{2}-2x+1\right)+2\left(x-1\right)-3=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x+54x^{2}-108x+54+2\left(x-1\right)-3=0
Use the distributive property to multiply 54 by x^{2}-2x+1.
-104x+54x^{2}+54+2\left(x-1\right)-3=0
Combine 4x and -108x to get -104x.
-104x+54x^{2}+54+2x-2-3=0
Use the distributive property to multiply 2 by x-1.
-102x+54x^{2}+54-2-3=0
Combine -104x and 2x to get -102x.
-102x+54x^{2}+52-3=0
Subtract 2 from 54 to get 52.
-102x+54x^{2}+49=0
Subtract 3 from 52 to get 49.
54x^{2}-102x+49=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-102\right)±\sqrt{\left(-102\right)^{2}-4\times 54\times 49}}{2\times 54}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 54 for a, -102 for b, and 49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-102\right)±\sqrt{10404-4\times 54\times 49}}{2\times 54}
Square -102.
x=\frac{-\left(-102\right)±\sqrt{10404-216\times 49}}{2\times 54}
Multiply -4 times 54.
x=\frac{-\left(-102\right)±\sqrt{10404-10584}}{2\times 54}
Multiply -216 times 49.
x=\frac{-\left(-102\right)±\sqrt{-180}}{2\times 54}
Add 10404 to -10584.
x=\frac{-\left(-102\right)±6\sqrt{5}i}{2\times 54}
Take the square root of -180.
x=\frac{102±6\sqrt{5}i}{2\times 54}
The opposite of -102 is 102.
x=\frac{102±6\sqrt{5}i}{108}
Multiply 2 times 54.
x=\frac{102+6\sqrt{5}i}{108}
Now solve the equation x=\frac{102±6\sqrt{5}i}{108} when ± is plus. Add 102 to 6i\sqrt{5}.
x=\frac{17+\sqrt{5}i}{18}
Divide 102+6i\sqrt{5} by 108.
x=\frac{-6\sqrt{5}i+102}{108}
Now solve the equation x=\frac{102±6\sqrt{5}i}{108} when ± is minus. Subtract 6i\sqrt{5} from 102.
x=\frac{-\sqrt{5}i+17}{18}
Divide 102-6i\sqrt{5} by 108.
x=\frac{17+\sqrt{5}i}{18} x=\frac{-\sqrt{5}i+17}{18}
The equation is now solved.
4x+54\left(x-1\right)^{2}+2\left(x-1\right)-3=0
Multiply 6 and 9 to get 54.
4x+54\left(x^{2}-2x+1\right)+2\left(x-1\right)-3=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x+54x^{2}-108x+54+2\left(x-1\right)-3=0
Use the distributive property to multiply 54 by x^{2}-2x+1.
-104x+54x^{2}+54+2\left(x-1\right)-3=0
Combine 4x and -108x to get -104x.
-104x+54x^{2}+54+2x-2-3=0
Use the distributive property to multiply 2 by x-1.
-102x+54x^{2}+54-2-3=0
Combine -104x and 2x to get -102x.
-102x+54x^{2}+52-3=0
Subtract 2 from 54 to get 52.
-102x+54x^{2}+49=0
Subtract 3 from 52 to get 49.
-102x+54x^{2}=-49
Subtract 49 from both sides. Anything subtracted from zero gives its negation.
54x^{2}-102x=-49
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{54x^{2}-102x}{54}=-\frac{49}{54}
Divide both sides by 54.
x^{2}+\left(-\frac{102}{54}\right)x=-\frac{49}{54}
Dividing by 54 undoes the multiplication by 54.
x^{2}-\frac{17}{9}x=-\frac{49}{54}
Reduce the fraction \frac{-102}{54} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{17}{9}x+\left(-\frac{17}{18}\right)^{2}=-\frac{49}{54}+\left(-\frac{17}{18}\right)^{2}
Divide -\frac{17}{9}, the coefficient of the x term, by 2 to get -\frac{17}{18}. Then add the square of -\frac{17}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{9}x+\frac{289}{324}=-\frac{49}{54}+\frac{289}{324}
Square -\frac{17}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{9}x+\frac{289}{324}=-\frac{5}{324}
Add -\frac{49}{54} to \frac{289}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{18}\right)^{2}=-\frac{5}{324}
Factor x^{2}-\frac{17}{9}x+\frac{289}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{18}\right)^{2}}=\sqrt{-\frac{5}{324}}
Take the square root of both sides of the equation.
x-\frac{17}{18}=\frac{\sqrt{5}i}{18} x-\frac{17}{18}=-\frac{\sqrt{5}i}{18}
Simplify.
x=\frac{17+\sqrt{5}i}{18} x=\frac{-\sqrt{5}i+17}{18}
Add \frac{17}{18} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}