Factor
\left(m-n\right)\left(2m-5n\right)\left(m+n\right)\left(2m+5n\right)
Evaluate
4m^{4}+25n^{4}-29\left(mn\right)^{2}
Share
Copied to clipboard
4m^{4}-29n^{2}m^{2}+25n^{4}
Consider 4m^{4}-29m^{2}n^{2}+25n^{4} as a polynomial over variable m.
\left(4m^{2}-25n^{2}\right)\left(m^{2}-n^{2}\right)
Find one factor of the form km^{p}+q, where km^{p} divides the monomial with the highest power 4m^{4} and q divides the constant factor 25n^{4}. One such factor is 4m^{2}-25n^{2}. Factor the polynomial by dividing it by this factor.
\left(2m-5n\right)\left(2m+5n\right)
Consider 4m^{2}-25n^{2}. Rewrite 4m^{2}-25n^{2} as \left(2m\right)^{2}-\left(5n\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(m-n\right)\left(m+n\right)
Consider m^{2}-n^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(m-n\right)\left(m+n\right)\left(2m-5n\right)\left(2m+5n\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}