Factor
\left(2b-5\right)\left(2b+1\right)
Evaluate
\left(2b-5\right)\left(2b+1\right)
Share
Copied to clipboard
4b^{2}-8b-5
Multiply and combine like terms.
p+q=-8 pq=4\left(-5\right)=-20
Factor the expression by grouping. First, the expression needs to be rewritten as 4b^{2}+pb+qb-5. To find p and q, set up a system to be solved.
1,-20 2,-10 4,-5
Since pq is negative, p and q have the opposite signs. Since p+q is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -20.
1-20=-19 2-10=-8 4-5=-1
Calculate the sum for each pair.
p=-10 q=2
The solution is the pair that gives sum -8.
\left(4b^{2}-10b\right)+\left(2b-5\right)
Rewrite 4b^{2}-8b-5 as \left(4b^{2}-10b\right)+\left(2b-5\right).
2b\left(2b-5\right)+2b-5
Factor out 2b in 4b^{2}-10b.
\left(2b-5\right)\left(2b+1\right)
Factor out common term 2b-5 by using distributive property.
4b^{2}-8b-5
Subtract 9 from 4 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}