Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{368\left(\frac{3}{28}a^{3}b\left(-\frac{7}{4}\right)b-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Multiply b and b to get b^{2}.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Multiply b and b to get b^{2}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Multiply \frac{3}{28} and -\frac{7}{4} to get -\frac{3}{16}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{4}a^{3}b^{2}\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Multiply -\frac{1}{8} and 2 to get -\frac{1}{4}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}+\frac{1}{4}a^{3}b^{2}\right)}{-\frac{1}{4}a^{2}b^{2}}
The opposite of -\frac{1}{4}a^{3}b^{2} is \frac{1}{4}a^{3}b^{2}.
\frac{368\times \frac{1}{16}a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
Combine -\frac{3}{16}a^{3}b^{2} and \frac{1}{4}a^{3}b^{2} to get \frac{1}{16}a^{3}b^{2}.
\frac{23a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
Multiply 368 and \frac{1}{16} to get 23.
\frac{23a}{-\frac{1}{4}}
Cancel out a^{2}b^{2} in both numerator and denominator.
\frac{23a\times 4}{-1}
Divide 23a by -\frac{1}{4} by multiplying 23a by the reciprocal of -\frac{1}{4}.
\frac{92a}{-1}
Multiply 23 and 4 to get 92.
-92a
Anything divided by -1 gives its opposite.
\frac{368\left(\frac{3}{28}a^{3}b\left(-\frac{7}{4}\right)b-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b\times 2b\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Multiply b and b to get b^{2}.
\frac{368\left(\frac{3}{28}a^{3}b^{2}\left(-\frac{7}{4}\right)-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Multiply b and b to get b^{2}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{8}a^{3}b^{2}\times 2\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Multiply \frac{3}{28} and -\frac{7}{4} to get -\frac{3}{16}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}-\left(-\frac{1}{4}a^{3}b^{2}\right)\right)}{-\frac{1}{4}a^{2}b^{2}}
Multiply -\frac{1}{8} and 2 to get -\frac{1}{4}.
\frac{368\left(-\frac{3}{16}a^{3}b^{2}+\frac{1}{4}a^{3}b^{2}\right)}{-\frac{1}{4}a^{2}b^{2}}
The opposite of -\frac{1}{4}a^{3}b^{2} is \frac{1}{4}a^{3}b^{2}.
\frac{368\times \frac{1}{16}a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
Combine -\frac{3}{16}a^{3}b^{2} and \frac{1}{4}a^{3}b^{2} to get \frac{1}{16}a^{3}b^{2}.
\frac{23a^{3}b^{2}}{-\frac{1}{4}a^{2}b^{2}}
Multiply 368 and \frac{1}{16} to get 23.
\frac{23a}{-\frac{1}{4}}
Cancel out a^{2}b^{2} in both numerator and denominator.
\frac{23a\times 4}{-1}
Divide 23a by -\frac{1}{4} by multiplying 23a by the reciprocal of -\frac{1}{4}.
\frac{92a}{-1}
Multiply 23 and 4 to get 92.
-92a
Anything divided by -1 gives its opposite.