Factor
3a\left(12a-5\right)
Evaluate
3a\left(12a-5\right)
Share
Copied to clipboard
3\left(12a^{2}-5a\right)
Factor out 3.
a\left(12a-5\right)
Consider 12a^{2}-5a. Factor out a.
3a\left(12a-5\right)
Rewrite the complete factored expression.
36a^{2}-15a=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}}}{2\times 36}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-15\right)±15}{2\times 36}
Take the square root of \left(-15\right)^{2}.
a=\frac{15±15}{2\times 36}
The opposite of -15 is 15.
a=\frac{15±15}{72}
Multiply 2 times 36.
a=\frac{30}{72}
Now solve the equation a=\frac{15±15}{72} when ± is plus. Add 15 to 15.
a=\frac{5}{12}
Reduce the fraction \frac{30}{72} to lowest terms by extracting and canceling out 6.
a=\frac{0}{72}
Now solve the equation a=\frac{15±15}{72} when ± is minus. Subtract 15 from 15.
a=0
Divide 0 by 72.
36a^{2}-15a=36\left(a-\frac{5}{12}\right)a
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{12} for x_{1} and 0 for x_{2}.
36a^{2}-15a=36\times \frac{12a-5}{12}a
Subtract \frac{5}{12} from a by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
36a^{2}-15a=3\left(12a-5\right)a
Cancel out 12, the greatest common factor in 36 and 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}