Evaluate
26+20x-7x^{2}
Factor
-7\left(x-\frac{10-\sqrt{282}}{7}\right)\left(x-\frac{\sqrt{282}+10}{7}\right)
Graph
Share
Copied to clipboard
35+8x-7x^{2}+12x-9
Combine -3x^{2} and -4x^{2} to get -7x^{2}.
35+20x-7x^{2}-9
Combine 8x and 12x to get 20x.
26+20x-7x^{2}
Subtract 9 from 35 to get 26.
factor(35+8x-7x^{2}+12x-9)
Combine -3x^{2} and -4x^{2} to get -7x^{2}.
factor(35+20x-7x^{2}-9)
Combine 8x and 12x to get 20x.
factor(26+20x-7x^{2})
Subtract 9 from 35 to get 26.
-7x^{2}+20x+26=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-20±\sqrt{20^{2}-4\left(-7\right)\times 26}}{2\left(-7\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{400-4\left(-7\right)\times 26}}{2\left(-7\right)}
Square 20.
x=\frac{-20±\sqrt{400+28\times 26}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-20±\sqrt{400+728}}{2\left(-7\right)}
Multiply 28 times 26.
x=\frac{-20±\sqrt{1128}}{2\left(-7\right)}
Add 400 to 728.
x=\frac{-20±2\sqrt{282}}{2\left(-7\right)}
Take the square root of 1128.
x=\frac{-20±2\sqrt{282}}{-14}
Multiply 2 times -7.
x=\frac{2\sqrt{282}-20}{-14}
Now solve the equation x=\frac{-20±2\sqrt{282}}{-14} when ± is plus. Add -20 to 2\sqrt{282}.
x=\frac{10-\sqrt{282}}{7}
Divide -20+2\sqrt{282} by -14.
x=\frac{-2\sqrt{282}-20}{-14}
Now solve the equation x=\frac{-20±2\sqrt{282}}{-14} when ± is minus. Subtract 2\sqrt{282} from -20.
x=\frac{\sqrt{282}+10}{7}
Divide -20-2\sqrt{282} by -14.
-7x^{2}+20x+26=-7\left(x-\frac{10-\sqrt{282}}{7}\right)\left(x-\frac{\sqrt{282}+10}{7}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{10-\sqrt{282}}{7} for x_{1} and \frac{10+\sqrt{282}}{7} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}