Factor
\left(1-\lambda \right)\left(\lambda +3\right)
Evaluate
\left(1-\lambda \right)\left(\lambda +3\right)
Share
Copied to clipboard
-\lambda ^{2}-2\lambda +3
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-2 ab=-3=-3
Factor the expression by grouping. First, the expression needs to be rewritten as -\lambda ^{2}+a\lambda +b\lambda +3. To find a and b, set up a system to be solved.
a=1 b=-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(-\lambda ^{2}+\lambda \right)+\left(-3\lambda +3\right)
Rewrite -\lambda ^{2}-2\lambda +3 as \left(-\lambda ^{2}+\lambda \right)+\left(-3\lambda +3\right).
\lambda \left(-\lambda +1\right)+3\left(-\lambda +1\right)
Factor out \lambda in the first and 3 in the second group.
\left(-\lambda +1\right)\left(\lambda +3\right)
Factor out common term -\lambda +1 by using distributive property.
-\lambda ^{2}-2\lambda +3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
\lambda =\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\lambda =\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Square -2.
\lambda =\frac{-\left(-2\right)±\sqrt{4+4\times 3}}{2\left(-1\right)}
Multiply -4 times -1.
\lambda =\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-1\right)}
Multiply 4 times 3.
\lambda =\frac{-\left(-2\right)±\sqrt{16}}{2\left(-1\right)}
Add 4 to 12.
\lambda =\frac{-\left(-2\right)±4}{2\left(-1\right)}
Take the square root of 16.
\lambda =\frac{2±4}{2\left(-1\right)}
The opposite of -2 is 2.
\lambda =\frac{2±4}{-2}
Multiply 2 times -1.
\lambda =\frac{6}{-2}
Now solve the equation \lambda =\frac{2±4}{-2} when ± is plus. Add 2 to 4.
\lambda =-3
Divide 6 by -2.
\lambda =-\frac{2}{-2}
Now solve the equation \lambda =\frac{2±4}{-2} when ± is minus. Subtract 4 from 2.
\lambda =1
Divide -2 by -2.
-\lambda ^{2}-2\lambda +3=-\left(\lambda -\left(-3\right)\right)\left(\lambda -1\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -3 for x_{1} and 1 for x_{2}.
-\lambda ^{2}-2\lambda +3=-\left(\lambda +3\right)\left(\lambda -1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}