Evaluate
\frac{a_{1}}{a}-\frac{5}{2}
Factor
\frac{\frac{2a_{1}}{a}-5}{2}
Share
Copied to clipboard
\frac{24}{8}+\frac{a_{1}}{a}-\frac{9}{8}-\frac{15}{4}+\frac{1}{4}\times \frac{-5}{2}
Convert 3 to fraction \frac{24}{8}.
\frac{24-9}{8}+\frac{a_{1}}{a}-\frac{15}{4}+\frac{1}{4}\times \frac{-5}{2}
Since \frac{24}{8} and \frac{9}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{15}{8}+\frac{a_{1}}{a}-\frac{15}{4}+\frac{1}{4}\times \frac{-5}{2}
Subtract 9 from 24 to get 15.
\frac{15}{8}+\frac{a_{1}}{a}-\frac{30}{8}+\frac{1}{4}\times \frac{-5}{2}
Least common multiple of 8 and 4 is 8. Convert \frac{15}{8} and \frac{15}{4} to fractions with denominator 8.
\frac{15-30}{8}+\frac{a_{1}}{a}+\frac{1}{4}\times \frac{-5}{2}
Since \frac{15}{8} and \frac{30}{8} have the same denominator, subtract them by subtracting their numerators.
-\frac{15}{8}+\frac{a_{1}}{a}+\frac{1}{4}\times \frac{-5}{2}
Subtract 30 from 15 to get -15.
-\frac{15}{8}+\frac{a_{1}}{a}+\frac{1}{4}\left(-\frac{5}{2}\right)
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
-\frac{15}{8}+\frac{a_{1}}{a}+\frac{1\left(-5\right)}{4\times 2}
Multiply \frac{1}{4} times -\frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{15}{8}+\frac{a_{1}}{a}+\frac{-5}{8}
Do the multiplications in the fraction \frac{1\left(-5\right)}{4\times 2}.
-\frac{15}{8}+\frac{a_{1}}{a}-\frac{5}{8}
Fraction \frac{-5}{8} can be rewritten as -\frac{5}{8} by extracting the negative sign.
\frac{-15-5}{8}+\frac{a_{1}}{a}
Since -\frac{15}{8} and \frac{5}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{-20}{8}+\frac{a_{1}}{a}
Subtract 5 from -15 to get -20.
-\frac{5}{2}+\frac{a_{1}}{a}
Reduce the fraction \frac{-20}{8} to lowest terms by extracting and canceling out 4.
-\frac{5a}{2a}+\frac{2a_{1}}{2a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and a is 2a. Multiply -\frac{5}{2} times \frac{a}{a}. Multiply \frac{a_{1}}{a} times \frac{2}{2}.
\frac{-5a+2a_{1}}{2a}
Since -\frac{5a}{2a} and \frac{2a_{1}}{2a} have the same denominator, add them by adding their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}