Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(x+4\right)}{x+4}+\frac{5}{x+4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x+4}{x+4}.
\frac{3\left(x+4\right)+5}{x+4}
Since \frac{3\left(x+4\right)}{x+4} and \frac{5}{x+4} have the same denominator, add them by adding their numerators.
\frac{3x+12+5}{x+4}
Do the multiplications in 3\left(x+4\right)+5.
\frac{3x+17}{x+4}
Combine like terms in 3x+12+5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+4\right)}{x+4}+\frac{5}{x+4})
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x+4}{x+4}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+4\right)+5}{x+4})
Since \frac{3\left(x+4\right)}{x+4} and \frac{5}{x+4} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+12+5}{x+4})
Do the multiplications in 3\left(x+4\right)+5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+17}{x+4})
Combine like terms in 3x+12+5.
\frac{\left(x^{1}+4\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+17)-\left(3x^{1}+17\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+4)}{\left(x^{1}+4\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(x^{1}+4\right)\times 3x^{1-1}-\left(3x^{1}+17\right)x^{1-1}}{\left(x^{1}+4\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(x^{1}+4\right)\times 3x^{0}-\left(3x^{1}+17\right)x^{0}}{\left(x^{1}+4\right)^{2}}
Do the arithmetic.
\frac{x^{1}\times 3x^{0}+4\times 3x^{0}-\left(3x^{1}x^{0}+17x^{0}\right)}{\left(x^{1}+4\right)^{2}}
Expand using distributive property.
\frac{3x^{1}+4\times 3x^{0}-\left(3x^{1}+17x^{0}\right)}{\left(x^{1}+4\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{3x^{1}+12x^{0}-\left(3x^{1}+17x^{0}\right)}{\left(x^{1}+4\right)^{2}}
Do the arithmetic.
\frac{3x^{1}+12x^{0}-3x^{1}-17x^{0}}{\left(x^{1}+4\right)^{2}}
Remove unnecessary parentheses.
\frac{\left(3-3\right)x^{1}+\left(12-17\right)x^{0}}{\left(x^{1}+4\right)^{2}}
Combine like terms.
\frac{-5x^{0}}{\left(x^{1}+4\right)^{2}}
Subtract 3 from 3 and 17 from 12.
\frac{-5x^{0}}{\left(x+4\right)^{2}}
For any term t, t^{1}=t.
\frac{-5}{\left(x+4\right)^{2}}
For any term t except 0, t^{0}=1.