Evaluate
\sqrt{22}+13.9\approx 18.59041576
Expand
\sqrt{22} + 13.9 = 18.59041576
Share
Copied to clipboard
20-\frac{10\left(\sqrt{\frac{22}{100}}-1\right)^{2}}{2}
Expand \frac{2.2}{10} by multiplying both numerator and the denominator by 10.
20-\frac{10\left(\sqrt{\frac{11}{50}}-1\right)^{2}}{2}
Reduce the fraction \frac{22}{100} to lowest terms by extracting and canceling out 2.
20-\frac{10\left(\frac{\sqrt{11}}{\sqrt{50}}-1\right)^{2}}{2}
Rewrite the square root of the division \sqrt{\frac{11}{50}} as the division of square roots \frac{\sqrt{11}}{\sqrt{50}}.
20-\frac{10\left(\frac{\sqrt{11}}{5\sqrt{2}}-1\right)^{2}}{2}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
20-\frac{10\left(\frac{\sqrt{11}\sqrt{2}}{5\left(\sqrt{2}\right)^{2}}-1\right)^{2}}{2}
Rationalize the denominator of \frac{\sqrt{11}}{5\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
20-\frac{10\left(\frac{\sqrt{11}\sqrt{2}}{5\times 2}-1\right)^{2}}{2}
The square of \sqrt{2} is 2.
20-\frac{10\left(\frac{\sqrt{22}}{5\times 2}-1\right)^{2}}{2}
To multiply \sqrt{11} and \sqrt{2}, multiply the numbers under the square root.
20-\frac{10\left(\frac{\sqrt{22}}{10}-1\right)^{2}}{2}
Multiply 5 and 2 to get 10.
20-\frac{10\left(\frac{\sqrt{22}}{10}-\frac{10}{10}\right)^{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{10}{10}.
20-\frac{10\times \left(\frac{\sqrt{22}-10}{10}\right)^{2}}{2}
Since \frac{\sqrt{22}}{10} and \frac{10}{10} have the same denominator, subtract them by subtracting their numerators.
20-\frac{10\times \frac{\left(\sqrt{22}-10\right)^{2}}{10^{2}}}{2}
To raise \frac{\sqrt{22}-10}{10} to a power, raise both numerator and denominator to the power and then divide.
20-\frac{\frac{10\left(\sqrt{22}-10\right)^{2}}{10^{2}}}{2}
Express 10\times \frac{\left(\sqrt{22}-10\right)^{2}}{10^{2}} as a single fraction.
20-\frac{\frac{\left(\sqrt{22}-10\right)^{2}}{10}}{2}
Cancel out 10 in both numerator and denominator.
20-\frac{\left(\sqrt{22}-10\right)^{2}}{10\times 2}
Express \frac{\frac{\left(\sqrt{22}-10\right)^{2}}{10}}{2} as a single fraction.
20-\frac{\left(\sqrt{22}\right)^{2}-20\sqrt{22}+100}{10\times 2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{22}-10\right)^{2}.
20-\frac{22-20\sqrt{22}+100}{10\times 2}
The square of \sqrt{22} is 22.
20-\frac{122-20\sqrt{22}}{10\times 2}
Add 22 and 100 to get 122.
20-\frac{122-20\sqrt{22}}{20}
Multiply 10 and 2 to get 20.
\frac{20\times 20}{20}-\frac{122-20\sqrt{22}}{20}
To add or subtract expressions, expand them to make their denominators the same. Multiply 20 times \frac{20}{20}.
\frac{20\times 20-\left(122-20\sqrt{22}\right)}{20}
Since \frac{20\times 20}{20} and \frac{122-20\sqrt{22}}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{400-122+20\sqrt{22}}{20}
Do the multiplications in 20\times 20-\left(122-20\sqrt{22}\right).
\frac{278+20\sqrt{22}}{20}
Do the calculations in 400-122+20\sqrt{22}.
20-\frac{10\left(\sqrt{\frac{22}{100}}-1\right)^{2}}{2}
Expand \frac{2.2}{10} by multiplying both numerator and the denominator by 10.
20-\frac{10\left(\sqrt{\frac{11}{50}}-1\right)^{2}}{2}
Reduce the fraction \frac{22}{100} to lowest terms by extracting and canceling out 2.
20-\frac{10\left(\frac{\sqrt{11}}{\sqrt{50}}-1\right)^{2}}{2}
Rewrite the square root of the division \sqrt{\frac{11}{50}} as the division of square roots \frac{\sqrt{11}}{\sqrt{50}}.
20-\frac{10\left(\frac{\sqrt{11}}{5\sqrt{2}}-1\right)^{2}}{2}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
20-\frac{10\left(\frac{\sqrt{11}\sqrt{2}}{5\left(\sqrt{2}\right)^{2}}-1\right)^{2}}{2}
Rationalize the denominator of \frac{\sqrt{11}}{5\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
20-\frac{10\left(\frac{\sqrt{11}\sqrt{2}}{5\times 2}-1\right)^{2}}{2}
The square of \sqrt{2} is 2.
20-\frac{10\left(\frac{\sqrt{22}}{5\times 2}-1\right)^{2}}{2}
To multiply \sqrt{11} and \sqrt{2}, multiply the numbers under the square root.
20-\frac{10\left(\frac{\sqrt{22}}{10}-1\right)^{2}}{2}
Multiply 5 and 2 to get 10.
20-\frac{10\left(\frac{\sqrt{22}}{10}-\frac{10}{10}\right)^{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{10}{10}.
20-\frac{10\times \left(\frac{\sqrt{22}-10}{10}\right)^{2}}{2}
Since \frac{\sqrt{22}}{10} and \frac{10}{10} have the same denominator, subtract them by subtracting their numerators.
20-\frac{10\times \frac{\left(\sqrt{22}-10\right)^{2}}{10^{2}}}{2}
To raise \frac{\sqrt{22}-10}{10} to a power, raise both numerator and denominator to the power and then divide.
20-\frac{\frac{10\left(\sqrt{22}-10\right)^{2}}{10^{2}}}{2}
Express 10\times \frac{\left(\sqrt{22}-10\right)^{2}}{10^{2}} as a single fraction.
20-\frac{\frac{\left(\sqrt{22}-10\right)^{2}}{10}}{2}
Cancel out 10 in both numerator and denominator.
20-\frac{\left(\sqrt{22}-10\right)^{2}}{10\times 2}
Express \frac{\frac{\left(\sqrt{22}-10\right)^{2}}{10}}{2} as a single fraction.
20-\frac{\left(\sqrt{22}\right)^{2}-20\sqrt{22}+100}{10\times 2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{22}-10\right)^{2}.
20-\frac{22-20\sqrt{22}+100}{10\times 2}
The square of \sqrt{22} is 22.
20-\frac{122-20\sqrt{22}}{10\times 2}
Add 22 and 100 to get 122.
20-\frac{122-20\sqrt{22}}{20}
Multiply 10 and 2 to get 20.
\frac{20\times 20}{20}-\frac{122-20\sqrt{22}}{20}
To add or subtract expressions, expand them to make their denominators the same. Multiply 20 times \frac{20}{20}.
\frac{20\times 20-\left(122-20\sqrt{22}\right)}{20}
Since \frac{20\times 20}{20} and \frac{122-20\sqrt{22}}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{400-122+20\sqrt{22}}{20}
Do the multiplications in 20\times 20-\left(122-20\sqrt{22}\right).
\frac{278+20\sqrt{22}}{20}
Do the calculations in 400-122+20\sqrt{22}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}