Evaluate
-\frac{3401}{30}\approx -113.366666667
Factor
-\frac{3401}{30} = -113\frac{11}{30} = -113.36666666666666
Share
Copied to clipboard
19\times \frac{5+\left(\frac{5}{2}-\frac{26}{2}\right)\times 9}{15}
Convert 13 to fraction \frac{26}{2}.
19\times \frac{5+\frac{5-26}{2}\times 9}{15}
Since \frac{5}{2} and \frac{26}{2} have the same denominator, subtract them by subtracting their numerators.
19\times \frac{5-\frac{21}{2}\times 9}{15}
Subtract 26 from 5 to get -21.
19\times \frac{5+\frac{-21\times 9}{2}}{15}
Express -\frac{21}{2}\times 9 as a single fraction.
19\times \frac{5+\frac{-189}{2}}{15}
Multiply -21 and 9 to get -189.
19\times \frac{5-\frac{189}{2}}{15}
Fraction \frac{-189}{2} can be rewritten as -\frac{189}{2} by extracting the negative sign.
19\times \frac{\frac{10}{2}-\frac{189}{2}}{15}
Convert 5 to fraction \frac{10}{2}.
19\times \frac{\frac{10-189}{2}}{15}
Since \frac{10}{2} and \frac{189}{2} have the same denominator, subtract them by subtracting their numerators.
19\times \frac{-\frac{179}{2}}{15}
Subtract 189 from 10 to get -179.
19\times \frac{-179}{2\times 15}
Express \frac{-\frac{179}{2}}{15} as a single fraction.
19\times \frac{-179}{30}
Multiply 2 and 15 to get 30.
19\left(-\frac{179}{30}\right)
Fraction \frac{-179}{30} can be rewritten as -\frac{179}{30} by extracting the negative sign.
\frac{19\left(-179\right)}{30}
Express 19\left(-\frac{179}{30}\right) as a single fraction.
\frac{-3401}{30}
Multiply 19 and -179 to get -3401.
-\frac{3401}{30}
Fraction \frac{-3401}{30} can be rewritten as -\frac{3401}{30} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}