Solve for x
x\geq -5
Graph
Share
Copied to clipboard
3\left(1+x\right)-2\left(2x+1\right)\leq 6
Multiply both sides of the equation by 6, the least common multiple of 2,3. Since 6 is positive, the inequality direction remains the same.
3+3x-2\left(2x+1\right)\leq 6
Use the distributive property to multiply 3 by 1+x.
3+3x-4x-2\leq 6
Use the distributive property to multiply -2 by 2x+1.
3-x-2\leq 6
Combine 3x and -4x to get -x.
1-x\leq 6
Subtract 2 from 3 to get 1.
-x\leq 6-1
Subtract 1 from both sides.
-x\leq 5
Subtract 1 from 6 to get 5.
x\geq -5
Divide both sides by -1. Since -1 is negative, the inequality direction is changed.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}