Evaluate
\frac{6477}{845}\approx 7.665088757
Factor
\frac{3 \cdot 17 \cdot 127}{5 \cdot 13 ^ {2}} = 7\frac{562}{845} = 7.6650887573964495
Share
Copied to clipboard
1-4\left(-\frac{32}{4225}\right)\times 220
Calculate 1 to the power of 2 and get 1.
1-\frac{4\left(-32\right)}{4225}\times 220
Express 4\left(-\frac{32}{4225}\right) as a single fraction.
1-\frac{-128}{4225}\times 220
Multiply 4 and -32 to get -128.
1-\left(-\frac{128}{4225}\times 220\right)
Fraction \frac{-128}{4225} can be rewritten as -\frac{128}{4225} by extracting the negative sign.
1-\frac{-128\times 220}{4225}
Express -\frac{128}{4225}\times 220 as a single fraction.
1-\frac{-28160}{4225}
Multiply -128 and 220 to get -28160.
1-\left(-\frac{5632}{845}\right)
Reduce the fraction \frac{-28160}{4225} to lowest terms by extracting and canceling out 5.
1+\frac{5632}{845}
The opposite of -\frac{5632}{845} is \frac{5632}{845}.
\frac{845}{845}+\frac{5632}{845}
Convert 1 to fraction \frac{845}{845}.
\frac{845+5632}{845}
Since \frac{845}{845} and \frac{5632}{845} have the same denominator, add them by adding their numerators.
\frac{6477}{845}
Add 845 and 5632 to get 6477.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}