Evaluate
1.3551896875
Factor
\frac{11 \cdot 263 \cdot 1499}{2 ^ {10} \cdot 5 ^ {5}} = 1\frac{1136607}{3200000} = 1.3551896875
Share
Copied to clipboard
1.3+\frac{0.3^{2}}{2}+\frac{0.3^{3}}{3}+\frac{0.3^{4}}{8}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Add 1 and 0.3 to get 1.3.
1.3+\frac{0.09}{2}+\frac{0.3^{3}}{3}+\frac{0.3^{4}}{8}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Calculate 0.3 to the power of 2 and get 0.09.
1.3+\frac{9}{200}+\frac{0.3^{3}}{3}+\frac{0.3^{4}}{8}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Expand \frac{0.09}{2} by multiplying both numerator and the denominator by 100.
\frac{13}{10}+\frac{9}{200}+\frac{0.3^{3}}{3}+\frac{0.3^{4}}{8}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Convert decimal number 1.3 to fraction \frac{13}{10}.
\frac{260}{200}+\frac{9}{200}+\frac{0.3^{3}}{3}+\frac{0.3^{4}}{8}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Least common multiple of 10 and 200 is 200. Convert \frac{13}{10} and \frac{9}{200} to fractions with denominator 200.
\frac{260+9}{200}+\frac{0.3^{3}}{3}+\frac{0.3^{4}}{8}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Since \frac{260}{200} and \frac{9}{200} have the same denominator, add them by adding their numerators.
\frac{269}{200}+\frac{0.3^{3}}{3}+\frac{0.3^{4}}{8}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Add 260 and 9 to get 269.
\frac{269}{200}+\frac{0.027}{3}+\frac{0.3^{4}}{8}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Calculate 0.3 to the power of 3 and get 0.027.
\frac{269}{200}+\frac{27}{3000}+\frac{0.3^{4}}{8}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Expand \frac{0.027}{3} by multiplying both numerator and the denominator by 1000.
\frac{269}{200}+\frac{9}{1000}+\frac{0.3^{4}}{8}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Reduce the fraction \frac{27}{3000} to lowest terms by extracting and canceling out 3.
\frac{1345}{1000}+\frac{9}{1000}+\frac{0.3^{4}}{8}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Least common multiple of 200 and 1000 is 1000. Convert \frac{269}{200} and \frac{9}{1000} to fractions with denominator 1000.
\frac{1345+9}{1000}+\frac{0.3^{4}}{8}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Since \frac{1345}{1000} and \frac{9}{1000} have the same denominator, add them by adding their numerators.
\frac{1354}{1000}+\frac{0.3^{4}}{8}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Add 1345 and 9 to get 1354.
\frac{677}{500}+\frac{0.3^{4}}{8}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Reduce the fraction \frac{1354}{1000} to lowest terms by extracting and canceling out 2.
\frac{677}{500}+\frac{0.0081}{8}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Calculate 0.3 to the power of 4 and get 0.0081.
\frac{677}{500}+\frac{81}{80000}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Expand \frac{0.0081}{8} by multiplying both numerator and the denominator by 10000.
\frac{108320}{80000}+\frac{81}{80000}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Least common multiple of 500 and 80000 is 80000. Convert \frac{677}{500} and \frac{81}{80000} to fractions with denominator 80000.
\frac{108320+81}{80000}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Since \frac{108320}{80000} and \frac{81}{80000} have the same denominator, add them by adding their numerators.
\frac{108401}{80000}+\frac{0.3^{5}}{15}+\frac{0.3^{6}}{48}
Add 108320 and 81 to get 108401.
\frac{108401}{80000}+\frac{0.00243}{15}+\frac{0.3^{6}}{48}
Calculate 0.3 to the power of 5 and get 0.00243.
\frac{108401}{80000}+\frac{243}{1500000}+\frac{0.3^{6}}{48}
Expand \frac{0.00243}{15} by multiplying both numerator and the denominator by 100000.
\frac{108401}{80000}+\frac{81}{500000}+\frac{0.3^{6}}{48}
Reduce the fraction \frac{243}{1500000} to lowest terms by extracting and canceling out 3.
\frac{2710025}{2000000}+\frac{324}{2000000}+\frac{0.3^{6}}{48}
Least common multiple of 80000 and 500000 is 2000000. Convert \frac{108401}{80000} and \frac{81}{500000} to fractions with denominator 2000000.
\frac{2710025+324}{2000000}+\frac{0.3^{6}}{48}
Since \frac{2710025}{2000000} and \frac{324}{2000000} have the same denominator, add them by adding their numerators.
\frac{2710349}{2000000}+\frac{0.3^{6}}{48}
Add 2710025 and 324 to get 2710349.
\frac{2710349}{2000000}+\frac{0.000729}{48}
Calculate 0.3 to the power of 6 and get 0.000729.
\frac{2710349}{2000000}+\frac{729}{48000000}
Expand \frac{0.000729}{48} by multiplying both numerator and the denominator by 1000000.
\frac{2710349}{2000000}+\frac{243}{16000000}
Reduce the fraction \frac{729}{48000000} to lowest terms by extracting and canceling out 3.
\frac{21682792}{16000000}+\frac{243}{16000000}
Least common multiple of 2000000 and 16000000 is 16000000. Convert \frac{2710349}{2000000} and \frac{243}{16000000} to fractions with denominator 16000000.
\frac{21682792+243}{16000000}
Since \frac{21682792}{16000000} and \frac{243}{16000000} have the same denominator, add them by adding their numerators.
\frac{21683035}{16000000}
Add 21682792 and 243 to get 21683035.
\frac{4336607}{3200000}
Reduce the fraction \frac{21683035}{16000000} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}