Factor
\left(1-T\right)\left(T+2\right)
Evaluate
\left(1-T\right)\left(T+2\right)
Share
Copied to clipboard
a+b=-1 ab=-2=-2
Factor the expression by grouping. First, the expression needs to be rewritten as -T^{2}+aT+bT+2. To find a and b, set up a system to be solved.
a=1 b=-2
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(-T^{2}+T\right)+\left(-2T+2\right)
Rewrite -T^{2}-T+2 as \left(-T^{2}+T\right)+\left(-2T+2\right).
T\left(-T+1\right)+2\left(-T+1\right)
Factor out T in the first and 2 in the second group.
\left(-T+1\right)\left(T+2\right)
Factor out common term -T+1 by using distributive property.
-T^{2}-T+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
T=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
T=\frac{-\left(-1\right)±\sqrt{1+4\times 2}}{2\left(-1\right)}
Multiply -4 times -1.
T=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-1\right)}
Multiply 4 times 2.
T=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-1\right)}
Add 1 to 8.
T=\frac{-\left(-1\right)±3}{2\left(-1\right)}
Take the square root of 9.
T=\frac{1±3}{2\left(-1\right)}
The opposite of -1 is 1.
T=\frac{1±3}{-2}
Multiply 2 times -1.
T=\frac{4}{-2}
Now solve the equation T=\frac{1±3}{-2} when ± is plus. Add 1 to 3.
T=-2
Divide 4 by -2.
T=-\frac{2}{-2}
Now solve the equation T=\frac{1±3}{-2} when ± is minus. Subtract 3 from 1.
T=1
Divide -2 by -2.
-T^{2}-T+2=-\left(T-\left(-2\right)\right)\left(T-1\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2 for x_{1} and 1 for x_{2}.
-T^{2}-T+2=-\left(T+2\right)\left(T-1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
x ^ 2 +1x -2 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -1 rs = -2
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{2} - u s = -\frac{1}{2} + u
Two numbers r and s sum up to -1 exactly when the average of the two numbers is \frac{1}{2}*-1 = -\frac{1}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{2} - u) (-\frac{1}{2} + u) = -2
To solve for unknown quantity u, substitute these in the product equation rs = -2
\frac{1}{4} - u^2 = -2
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -2-\frac{1}{4} = -\frac{9}{4}
Simplify the expression by subtracting \frac{1}{4} on both sides
u^2 = \frac{9}{4} u = \pm\sqrt{\frac{9}{4}} = \pm \frac{3}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{2} - \frac{3}{2} = -2 s = -\frac{1}{2} + \frac{3}{2} = 1
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}