Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(-x^{2}-4+4x\right)
Factor out 3.
-x^{2}+4x-4
Consider -x^{2}-4+4x. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=4 ab=-\left(-4\right)=4
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,4 2,2
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 4.
1+4=5 2+2=4
Calculate the sum for each pair.
a=2 b=2
The solution is the pair that gives sum 4.
\left(-x^{2}+2x\right)+\left(2x-4\right)
Rewrite -x^{2}+4x-4 as \left(-x^{2}+2x\right)+\left(2x-4\right).
-x\left(x-2\right)+2\left(x-2\right)
Factor out -x in the first and 2 in the second group.
\left(x-2\right)\left(-x+2\right)
Factor out common term x-2 by using distributive property.
3\left(x-2\right)\left(-x+2\right)
Rewrite the complete factored expression.
-3x^{2}+12x-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\left(-3\right)\left(-12\right)}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\left(-3\right)\left(-12\right)}}{2\left(-3\right)}
Square 12.
x=\frac{-12±\sqrt{144+12\left(-12\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-12±\sqrt{144-144}}{2\left(-3\right)}
Multiply 12 times -12.
x=\frac{-12±\sqrt{0}}{2\left(-3\right)}
Add 144 to -144.
x=\frac{-12±0}{2\left(-3\right)}
Take the square root of 0.
x=\frac{-12±0}{-6}
Multiply 2 times -3.
-3x^{2}+12x-12=-3\left(x-2\right)\left(x-2\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and 2 for x_{2}.