Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}+\frac{1}{2}x+\frac{7}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-3\right)\times \frac{7}{2}}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, \frac{1}{2} for b, and \frac{7}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-3\right)\times \frac{7}{2}}}{2\left(-3\right)}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+12\times \frac{7}{2}}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+42}}{2\left(-3\right)}
Multiply 12 times \frac{7}{2}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{169}{4}}}{2\left(-3\right)}
Add \frac{1}{4} to 42.
x=\frac{-\frac{1}{2}±\frac{13}{2}}{2\left(-3\right)}
Take the square root of \frac{169}{4}.
x=\frac{-\frac{1}{2}±\frac{13}{2}}{-6}
Multiply 2 times -3.
x=\frac{6}{-6}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{13}{2}}{-6} when ± is plus. Add -\frac{1}{2} to \frac{13}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-1
Divide 6 by -6.
x=-\frac{7}{-6}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{13}{2}}{-6} when ± is minus. Subtract \frac{13}{2} from -\frac{1}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{7}{6}
Divide -7 by -6.
x=-1 x=\frac{7}{6}
The equation is now solved.
-3x^{2}+\frac{1}{2}x+\frac{7}{2}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-3x^{2}+\frac{1}{2}x+\frac{7}{2}-\frac{7}{2}=-\frac{7}{2}
Subtract \frac{7}{2} from both sides of the equation.
-3x^{2}+\frac{1}{2}x=-\frac{7}{2}
Subtracting \frac{7}{2} from itself leaves 0.
\frac{-3x^{2}+\frac{1}{2}x}{-3}=-\frac{\frac{7}{2}}{-3}
Divide both sides by -3.
x^{2}+\frac{\frac{1}{2}}{-3}x=-\frac{\frac{7}{2}}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{1}{6}x=-\frac{\frac{7}{2}}{-3}
Divide \frac{1}{2} by -3.
x^{2}-\frac{1}{6}x=\frac{7}{6}
Divide -\frac{7}{2} by -3.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{7}{6}+\left(-\frac{1}{12}\right)^{2}
Divide -\frac{1}{6}, the coefficient of the x term, by 2 to get -\frac{1}{12}. Then add the square of -\frac{1}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{7}{6}+\frac{1}{144}
Square -\frac{1}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{169}{144}
Add \frac{7}{6} to \frac{1}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{12}\right)^{2}=\frac{169}{144}
Factor x^{2}-\frac{1}{6}x+\frac{1}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
Take the square root of both sides of the equation.
x-\frac{1}{12}=\frac{13}{12} x-\frac{1}{12}=-\frac{13}{12}
Simplify.
x=\frac{7}{6} x=-1
Add \frac{1}{12} to both sides of the equation.