Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}+260x-645=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-260±\sqrt{260^{2}-4\left(-2\right)\left(-645\right)}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-260±\sqrt{67600-4\left(-2\right)\left(-645\right)}}{2\left(-2\right)}
Square 260.
x=\frac{-260±\sqrt{67600+8\left(-645\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-260±\sqrt{67600-5160}}{2\left(-2\right)}
Multiply 8 times -645.
x=\frac{-260±\sqrt{62440}}{2\left(-2\right)}
Add 67600 to -5160.
x=\frac{-260±2\sqrt{15610}}{2\left(-2\right)}
Take the square root of 62440.
x=\frac{-260±2\sqrt{15610}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{15610}-260}{-4}
Now solve the equation x=\frac{-260±2\sqrt{15610}}{-4} when ± is plus. Add -260 to 2\sqrt{15610}.
x=-\frac{\sqrt{15610}}{2}+65
Divide -260+2\sqrt{15610} by -4.
x=\frac{-2\sqrt{15610}-260}{-4}
Now solve the equation x=\frac{-260±2\sqrt{15610}}{-4} when ± is minus. Subtract 2\sqrt{15610} from -260.
x=\frac{\sqrt{15610}}{2}+65
Divide -260-2\sqrt{15610} by -4.
-2x^{2}+260x-645=-2\left(x-\left(-\frac{\sqrt{15610}}{2}+65\right)\right)\left(x-\left(\frac{\sqrt{15610}}{2}+65\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 65-\frac{\sqrt{15610}}{2} for x_{1} and 65+\frac{\sqrt{15610}}{2} for x_{2}.
x ^ 2 -130x +\frac{645}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 130 rs = \frac{645}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 65 - u s = 65 + u
Two numbers r and s sum up to 130 exactly when the average of the two numbers is \frac{1}{2}*130 = 65. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(65 - u) (65 + u) = \frac{645}{2}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{645}{2}
4225 - u^2 = \frac{645}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{645}{2}-4225 = -\frac{7805}{2}
Simplify the expression by subtracting 4225 on both sides
u^2 = \frac{7805}{2} u = \pm\sqrt{\frac{7805}{2}} = \pm \frac{\sqrt{7805}}{\sqrt{2}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =65 - \frac{\sqrt{7805}}{\sqrt{2}} = 2.530 s = 65 + \frac{\sqrt{7805}}{\sqrt{2}} = 127.470
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.