Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+10x-10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{100-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
Square 10.
x=\frac{-10±\sqrt{100+4\left(-10\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-10±\sqrt{100-40}}{2\left(-1\right)}
Multiply 4 times -10.
x=\frac{-10±\sqrt{60}}{2\left(-1\right)}
Add 100 to -40.
x=\frac{-10±2\sqrt{15}}{2\left(-1\right)}
Take the square root of 60.
x=\frac{-10±2\sqrt{15}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{15}-10}{-2}
Now solve the equation x=\frac{-10±2\sqrt{15}}{-2} when ± is plus. Add -10 to 2\sqrt{15}.
x=5-\sqrt{15}
Divide -10+2\sqrt{15} by -2.
x=\frac{-2\sqrt{15}-10}{-2}
Now solve the equation x=\frac{-10±2\sqrt{15}}{-2} when ± is minus. Subtract 2\sqrt{15} from -10.
x=\sqrt{15}+5
Divide -10-2\sqrt{15} by -2.
-x^{2}+10x-10=-\left(x-\left(5-\sqrt{15}\right)\right)\left(x-\left(\sqrt{15}+5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5-\sqrt{15} for x_{1} and 5+\sqrt{15} for x_{2}.