Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-\left(\left(\frac{2}{10}\right)^{2}b_{2}+\frac{8}{10}\log_{2}\left(\frac{8}{10}\right)\right)
Multiply \frac{2}{10} and \frac{2}{10} to get \left(\frac{2}{10}\right)^{2}.
-\left(\left(\frac{1}{5}\right)^{2}b_{2}+\frac{8}{10}\log_{2}\left(\frac{8}{10}\right)\right)
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
-\left(\frac{1}{25}b_{2}+\frac{8}{10}\log_{2}\left(\frac{8}{10}\right)\right)
Calculate \frac{1}{5} to the power of 2 and get \frac{1}{25}.
-\left(\frac{1}{25}b_{2}+\frac{4}{5}\log_{2}\left(\frac{8}{10}\right)\right)
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
-\left(\frac{1}{25}b_{2}+\frac{4}{5}\log_{2}\left(\frac{4}{5}\right)\right)
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
-\frac{1}{25}b_{2}-\frac{4}{5}\log_{2}\left(\frac{4}{5}\right)
To find the opposite of \frac{1}{25}b_{2}+\frac{4}{5}\log_{2}\left(\frac{4}{5}\right), find the opposite of each term.
\frac{b_{2}+20\log_{2}\left(\frac{4}{5}\right)}{25}
Consider \frac{1}{5}\times \frac{1}{5}b_{2}+\frac{4}{5}\ln(\frac{4}{5})\ln(2)^{-1}. Factor out \frac{1}{25}.
-\frac{b_{2}+20\log_{2}\left(\frac{4}{5}\right)}{25}
Rewrite the complete factored expression. Simplify.