Evaluate
-\frac{b_{2}}{25}+\frac{4\log_{2}\left(5\right)}{5}-\frac{8}{5}
Factor
\frac{-b_{2}+20\log_{2}\left(5\right)-40}{25}
Share
Copied to clipboard
-\left(\left(\frac{2}{10}\right)^{2}b_{2}+\frac{8}{10}\log_{2}\left(\frac{8}{10}\right)\right)
Multiply \frac{2}{10} and \frac{2}{10} to get \left(\frac{2}{10}\right)^{2}.
-\left(\left(\frac{1}{5}\right)^{2}b_{2}+\frac{8}{10}\log_{2}\left(\frac{8}{10}\right)\right)
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
-\left(\frac{1}{25}b_{2}+\frac{8}{10}\log_{2}\left(\frac{8}{10}\right)\right)
Calculate \frac{1}{5} to the power of 2 and get \frac{1}{25}.
-\left(\frac{1}{25}b_{2}+\frac{4}{5}\log_{2}\left(\frac{8}{10}\right)\right)
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
-\left(\frac{1}{25}b_{2}+\frac{4}{5}\log_{2}\left(\frac{4}{5}\right)\right)
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
-\frac{1}{25}b_{2}-\frac{4}{5}\log_{2}\left(\frac{4}{5}\right)
To find the opposite of \frac{1}{25}b_{2}+\frac{4}{5}\log_{2}\left(\frac{4}{5}\right), find the opposite of each term.
\frac{b_{2}+20\log_{2}\left(\frac{4}{5}\right)}{25}
Consider \frac{1}{5}\times \frac{1}{5}b_{2}+\frac{4}{5}\ln(\frac{4}{5})\ln(2)^{-1}. Factor out \frac{1}{25}.
-\frac{b_{2}+20\log_{2}\left(\frac{4}{5}\right)}{25}
Rewrite the complete factored expression. Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}