Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2160x-16x^{2}-20000=8000
Use the distributive property to multiply 4x-40 by 500-4x and combine like terms.
2160x-16x^{2}-20000-8000=0
Subtract 8000 from both sides.
2160x-16x^{2}-28000=0
Subtract 8000 from -20000 to get -28000.
-16x^{2}+2160x-28000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2160±\sqrt{2160^{2}-4\left(-16\right)\left(-28000\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 2160 for b, and -28000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2160±\sqrt{4665600-4\left(-16\right)\left(-28000\right)}}{2\left(-16\right)}
Square 2160.
x=\frac{-2160±\sqrt{4665600+64\left(-28000\right)}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-2160±\sqrt{4665600-1792000}}{2\left(-16\right)}
Multiply 64 times -28000.
x=\frac{-2160±\sqrt{2873600}}{2\left(-16\right)}
Add 4665600 to -1792000.
x=\frac{-2160±80\sqrt{449}}{2\left(-16\right)}
Take the square root of 2873600.
x=\frac{-2160±80\sqrt{449}}{-32}
Multiply 2 times -16.
x=\frac{80\sqrt{449}-2160}{-32}
Now solve the equation x=\frac{-2160±80\sqrt{449}}{-32} when ± is plus. Add -2160 to 80\sqrt{449}.
x=\frac{135-5\sqrt{449}}{2}
Divide -2160+80\sqrt{449} by -32.
x=\frac{-80\sqrt{449}-2160}{-32}
Now solve the equation x=\frac{-2160±80\sqrt{449}}{-32} when ± is minus. Subtract 80\sqrt{449} from -2160.
x=\frac{5\sqrt{449}+135}{2}
Divide -2160-80\sqrt{449} by -32.
x=\frac{135-5\sqrt{449}}{2} x=\frac{5\sqrt{449}+135}{2}
The equation is now solved.
2160x-16x^{2}-20000=8000
Use the distributive property to multiply 4x-40 by 500-4x and combine like terms.
2160x-16x^{2}=8000+20000
Add 20000 to both sides.
2160x-16x^{2}=28000
Add 8000 and 20000 to get 28000.
-16x^{2}+2160x=28000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-16x^{2}+2160x}{-16}=\frac{28000}{-16}
Divide both sides by -16.
x^{2}+\frac{2160}{-16}x=\frac{28000}{-16}
Dividing by -16 undoes the multiplication by -16.
x^{2}-135x=\frac{28000}{-16}
Divide 2160 by -16.
x^{2}-135x=-1750
Divide 28000 by -16.
x^{2}-135x+\left(-\frac{135}{2}\right)^{2}=-1750+\left(-\frac{135}{2}\right)^{2}
Divide -135, the coefficient of the x term, by 2 to get -\frac{135}{2}. Then add the square of -\frac{135}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-135x+\frac{18225}{4}=-1750+\frac{18225}{4}
Square -\frac{135}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-135x+\frac{18225}{4}=\frac{11225}{4}
Add -1750 to \frac{18225}{4}.
\left(x-\frac{135}{2}\right)^{2}=\frac{11225}{4}
Factor x^{2}-135x+\frac{18225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{135}{2}\right)^{2}}=\sqrt{\frac{11225}{4}}
Take the square root of both sides of the equation.
x-\frac{135}{2}=\frac{5\sqrt{449}}{2} x-\frac{135}{2}=-\frac{5\sqrt{449}}{2}
Simplify.
x=\frac{5\sqrt{449}+135}{2} x=\frac{135-5\sqrt{449}}{2}
Add \frac{135}{2} to both sides of the equation.