Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-30x+25+32=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-5\right)^{2}.
9x^{2}-30x+57=0
Add 25 and 32 to get 57.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 9\times 57}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -30 for b, and 57 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 9\times 57}}{2\times 9}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-36\times 57}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-30\right)±\sqrt{900-2052}}{2\times 9}
Multiply -36 times 57.
x=\frac{-\left(-30\right)±\sqrt{-1152}}{2\times 9}
Add 900 to -2052.
x=\frac{-\left(-30\right)±24\sqrt{2}i}{2\times 9}
Take the square root of -1152.
x=\frac{30±24\sqrt{2}i}{2\times 9}
The opposite of -30 is 30.
x=\frac{30±24\sqrt{2}i}{18}
Multiply 2 times 9.
x=\frac{30+24\sqrt{2}i}{18}
Now solve the equation x=\frac{30±24\sqrt{2}i}{18} when ± is plus. Add 30 to 24i\sqrt{2}.
x=\frac{5+4\sqrt{2}i}{3}
Divide 30+24i\sqrt{2} by 18.
x=\frac{-24\sqrt{2}i+30}{18}
Now solve the equation x=\frac{30±24\sqrt{2}i}{18} when ± is minus. Subtract 24i\sqrt{2} from 30.
x=\frac{-4\sqrt{2}i+5}{3}
Divide 30-24i\sqrt{2} by 18.
x=\frac{5+4\sqrt{2}i}{3} x=\frac{-4\sqrt{2}i+5}{3}
The equation is now solved.
9x^{2}-30x+25+32=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-5\right)^{2}.
9x^{2}-30x+57=0
Add 25 and 32 to get 57.
9x^{2}-30x=-57
Subtract 57 from both sides. Anything subtracted from zero gives its negation.
\frac{9x^{2}-30x}{9}=-\frac{57}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{30}{9}\right)x=-\frac{57}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{10}{3}x=-\frac{57}{9}
Reduce the fraction \frac{-30}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{10}{3}x=-\frac{19}{3}
Reduce the fraction \frac{-57}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=-\frac{19}{3}+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10}{3}x+\frac{25}{9}=-\frac{19}{3}+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10}{3}x+\frac{25}{9}=-\frac{32}{9}
Add -\frac{19}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{3}\right)^{2}=-\frac{32}{9}
Factor x^{2}-\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{-\frac{32}{9}}
Take the square root of both sides of the equation.
x-\frac{5}{3}=\frac{4\sqrt{2}i}{3} x-\frac{5}{3}=-\frac{4\sqrt{2}i}{3}
Simplify.
x=\frac{5+4\sqrt{2}i}{3} x=\frac{-4\sqrt{2}i+5}{3}
Add \frac{5}{3} to both sides of the equation.