Evaluate
4x^{2}-5x+12
Expand
4x^{2}-5x+12
Graph
Share
Copied to clipboard
3x^{2}-9x-4x+12+\left(x-1\right)\left(x+1\right)+8x+1
Apply the distributive property by multiplying each term of 3x-4 by each term of x-3.
3x^{2}-13x+12+\left(x-1\right)\left(x+1\right)+8x+1
Combine -9x and -4x to get -13x.
3x^{2}-13x+12+x^{2}-1^{2}+8x+1
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3x^{2}-13x+12+x^{2}-1+8x+1
Calculate 1 to the power of 2 and get 1.
4x^{2}-13x+12-1+8x+1
Combine 3x^{2} and x^{2} to get 4x^{2}.
4x^{2}-13x+11+8x+1
Subtract 1 from 12 to get 11.
4x^{2}-5x+11+1
Combine -13x and 8x to get -5x.
4x^{2}-5x+12
Add 11 and 1 to get 12.
3x^{2}-9x-4x+12+\left(x-1\right)\left(x+1\right)+8x+1
Apply the distributive property by multiplying each term of 3x-4 by each term of x-3.
3x^{2}-13x+12+\left(x-1\right)\left(x+1\right)+8x+1
Combine -9x and -4x to get -13x.
3x^{2}-13x+12+x^{2}-1^{2}+8x+1
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3x^{2}-13x+12+x^{2}-1+8x+1
Calculate 1 to the power of 2 and get 1.
4x^{2}-13x+12-1+8x+1
Combine 3x^{2} and x^{2} to get 4x^{2}.
4x^{2}-13x+11+8x+1
Subtract 1 from 12 to get 11.
4x^{2}-5x+11+1
Combine -13x and 8x to get -5x.
4x^{2}-5x+12
Add 11 and 1 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}