Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3-\frac{2}{4}}{\frac{1}{6}}+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Multiply 2 and \frac{1}{4} to get \frac{2}{4}.
\frac{3-\frac{1}{2}}{\frac{1}{6}}+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{6}{2}-\frac{1}{2}}{\frac{1}{6}}+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Convert 3 to fraction \frac{6}{2}.
\frac{\frac{6-1}{2}}{\frac{1}{6}}+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Since \frac{6}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{2}}{\frac{1}{6}}+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Subtract 1 from 6 to get 5.
\frac{5}{2}\times 6+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Divide \frac{5}{2} by \frac{1}{6} by multiplying \frac{5}{2} by the reciprocal of \frac{1}{6}.
\frac{5\times 6}{2}+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Express \frac{5}{2}\times 6 as a single fraction.
\frac{30}{2}+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Multiply 5 and 6 to get 30.
15+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Divide 30 by 2 to get 15.
15+\frac{1}{9}\times \frac{3}{4}+\frac{3}{4}+\frac{1}{6}
Divide \frac{1}{9} by \frac{4}{3} by multiplying \frac{1}{9} by the reciprocal of \frac{4}{3}.
15+\frac{1\times 3}{9\times 4}+\frac{3}{4}+\frac{1}{6}
Multiply \frac{1}{9} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
15+\frac{3}{36}+\frac{3}{4}+\frac{1}{6}
Do the multiplications in the fraction \frac{1\times 3}{9\times 4}.
15+\frac{1}{12}+\frac{3}{4}+\frac{1}{6}
Reduce the fraction \frac{3}{36} to lowest terms by extracting and canceling out 3.
\frac{180}{12}+\frac{1}{12}+\frac{3}{4}+\frac{1}{6}
Convert 15 to fraction \frac{180}{12}.
\frac{180+1}{12}+\frac{3}{4}+\frac{1}{6}
Since \frac{180}{12} and \frac{1}{12} have the same denominator, add them by adding their numerators.
\frac{181}{12}+\frac{3}{4}+\frac{1}{6}
Add 180 and 1 to get 181.
\frac{181}{12}+\frac{9}{12}+\frac{1}{6}
Least common multiple of 12 and 4 is 12. Convert \frac{181}{12} and \frac{3}{4} to fractions with denominator 12.
\frac{181+9}{12}+\frac{1}{6}
Since \frac{181}{12} and \frac{9}{12} have the same denominator, add them by adding their numerators.
\frac{190}{12}+\frac{1}{6}
Add 181 and 9 to get 190.
\frac{95}{6}+\frac{1}{6}
Reduce the fraction \frac{190}{12} to lowest terms by extracting and canceling out 2.
\frac{95+1}{6}
Since \frac{95}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{96}{6}
Add 95 and 1 to get 96.
16
Divide 96 by 6 to get 16.