Evaluate
16
Factor
2^{4}
Share
Copied to clipboard
\frac{3-\frac{2}{4}}{\frac{1}{6}}+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Multiply 2 and \frac{1}{4} to get \frac{2}{4}.
\frac{3-\frac{1}{2}}{\frac{1}{6}}+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{6}{2}-\frac{1}{2}}{\frac{1}{6}}+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Convert 3 to fraction \frac{6}{2}.
\frac{\frac{6-1}{2}}{\frac{1}{6}}+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Since \frac{6}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{2}}{\frac{1}{6}}+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Subtract 1 from 6 to get 5.
\frac{5}{2}\times 6+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Divide \frac{5}{2} by \frac{1}{6} by multiplying \frac{5}{2} by the reciprocal of \frac{1}{6}.
\frac{5\times 6}{2}+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Express \frac{5}{2}\times 6 as a single fraction.
\frac{30}{2}+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Multiply 5 and 6 to get 30.
15+\frac{\frac{1}{9}}{\frac{4}{3}}+\frac{3}{4}+\frac{1}{6}
Divide 30 by 2 to get 15.
15+\frac{1}{9}\times \frac{3}{4}+\frac{3}{4}+\frac{1}{6}
Divide \frac{1}{9} by \frac{4}{3} by multiplying \frac{1}{9} by the reciprocal of \frac{4}{3}.
15+\frac{1\times 3}{9\times 4}+\frac{3}{4}+\frac{1}{6}
Multiply \frac{1}{9} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
15+\frac{3}{36}+\frac{3}{4}+\frac{1}{6}
Do the multiplications in the fraction \frac{1\times 3}{9\times 4}.
15+\frac{1}{12}+\frac{3}{4}+\frac{1}{6}
Reduce the fraction \frac{3}{36} to lowest terms by extracting and canceling out 3.
\frac{180}{12}+\frac{1}{12}+\frac{3}{4}+\frac{1}{6}
Convert 15 to fraction \frac{180}{12}.
\frac{180+1}{12}+\frac{3}{4}+\frac{1}{6}
Since \frac{180}{12} and \frac{1}{12} have the same denominator, add them by adding their numerators.
\frac{181}{12}+\frac{3}{4}+\frac{1}{6}
Add 180 and 1 to get 181.
\frac{181}{12}+\frac{9}{12}+\frac{1}{6}
Least common multiple of 12 and 4 is 12. Convert \frac{181}{12} and \frac{3}{4} to fractions with denominator 12.
\frac{181+9}{12}+\frac{1}{6}
Since \frac{181}{12} and \frac{9}{12} have the same denominator, add them by adding their numerators.
\frac{190}{12}+\frac{1}{6}
Add 181 and 9 to get 190.
\frac{95}{6}+\frac{1}{6}
Reduce the fraction \frac{190}{12} to lowest terms by extracting and canceling out 2.
\frac{95+1}{6}
Since \frac{95}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{96}{6}
Add 95 and 1 to get 96.
16
Divide 96 by 6 to get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}