Evaluate
-\left(x+6\right)\left(2x+3\right)
Expand
-2x^{2}-15x-18
Graph
Share
Copied to clipboard
2x^{2}-4x+3x-6-\left(4x+6\right)\left(x+2\right)
Apply the distributive property by multiplying each term of 2x+3 by each term of x-2.
2x^{2}-x-6-\left(4x+6\right)\left(x+2\right)
Combine -4x and 3x to get -x.
2x^{2}-x-6-\left(4x^{2}+8x+6x+12\right)
Apply the distributive property by multiplying each term of 4x+6 by each term of x+2.
2x^{2}-x-6-\left(4x^{2}+14x+12\right)
Combine 8x and 6x to get 14x.
2x^{2}-x-6-4x^{2}-14x-12
To find the opposite of 4x^{2}+14x+12, find the opposite of each term.
-2x^{2}-x-6-14x-12
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-2x^{2}-15x-6-12
Combine -x and -14x to get -15x.
-2x^{2}-15x-18
Subtract 12 from -6 to get -18.
2x^{2}-4x+3x-6-\left(4x+6\right)\left(x+2\right)
Apply the distributive property by multiplying each term of 2x+3 by each term of x-2.
2x^{2}-x-6-\left(4x+6\right)\left(x+2\right)
Combine -4x and 3x to get -x.
2x^{2}-x-6-\left(4x^{2}+8x+6x+12\right)
Apply the distributive property by multiplying each term of 4x+6 by each term of x+2.
2x^{2}-x-6-\left(4x^{2}+14x+12\right)
Combine 8x and 6x to get 14x.
2x^{2}-x-6-4x^{2}-14x-12
To find the opposite of 4x^{2}+14x+12, find the opposite of each term.
-2x^{2}-x-6-14x-12
Combine 2x^{2} and -4x^{2} to get -2x^{2}.
-2x^{2}-15x-6-12
Combine -x and -14x to get -15x.
-2x^{2}-15x-18
Subtract 12 from -6 to get -18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}