Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x+3}{x+3}-\frac{5}{x+3}}{\frac{x+1}{x+3}+\frac{1}{x-3}-\frac{2}{x^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+3}{x+3}.
\frac{\frac{x+3-5}{x+3}}{\frac{x+1}{x+3}+\frac{1}{x-3}-\frac{2}{x^{2}-9}}
Since \frac{x+3}{x+3} and \frac{5}{x+3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-2}{x+3}}{\frac{x+1}{x+3}+\frac{1}{x-3}-\frac{2}{x^{2}-9}}
Combine like terms in x+3-5.
\frac{\frac{x-2}{x+3}}{\frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x+3}{\left(x-3\right)\left(x+3\right)}-\frac{2}{x^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and x-3 is \left(x-3\right)\left(x+3\right). Multiply \frac{x+1}{x+3} times \frac{x-3}{x-3}. Multiply \frac{1}{x-3} times \frac{x+3}{x+3}.
\frac{\frac{x-2}{x+3}}{\frac{\left(x+1\right)\left(x-3\right)+x+3}{\left(x-3\right)\left(x+3\right)}-\frac{2}{x^{2}-9}}
Since \frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{x+3}{\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x-2}{x+3}}{\frac{x^{2}-3x+x-3+x+3}{\left(x-3\right)\left(x+3\right)}-\frac{2}{x^{2}-9}}
Do the multiplications in \left(x+1\right)\left(x-3\right)+x+3.
\frac{\frac{x-2}{x+3}}{\frac{x^{2}-x}{\left(x-3\right)\left(x+3\right)}-\frac{2}{x^{2}-9}}
Combine like terms in x^{2}-3x+x-3+x+3.
\frac{\frac{x-2}{x+3}}{\frac{x^{2}-x}{\left(x-3\right)\left(x+3\right)}-\frac{2}{\left(x-3\right)\left(x+3\right)}}
Factor x^{2}-9.
\frac{\frac{x-2}{x+3}}{\frac{x^{2}-x-2}{\left(x-3\right)\left(x+3\right)}}
Since \frac{x^{2}-x}{\left(x-3\right)\left(x+3\right)} and \frac{2}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-2}{x+3}}{\frac{-2-x+x^{2}}{\left(x-3\right)\left(x+3\right)}}
Combine like terms in x^{2}-x-2.
\frac{\left(x-2\right)\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(-2-x+x^{2}\right)}
Divide \frac{x-2}{x+3} by \frac{-2-x+x^{2}}{\left(x-3\right)\left(x+3\right)} by multiplying \frac{x-2}{x+3} by the reciprocal of \frac{-2-x+x^{2}}{\left(x-3\right)\left(x+3\right)}.
\frac{\left(x-3\right)\left(x-2\right)}{x^{2}-x-2}
Cancel out x+3 in both numerator and denominator.
\frac{\left(x-3\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{x-3}{x+1}
Cancel out x-2 in both numerator and denominator.
\frac{\frac{x+3}{x+3}-\frac{5}{x+3}}{\frac{x+1}{x+3}+\frac{1}{x-3}-\frac{2}{x^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+3}{x+3}.
\frac{\frac{x+3-5}{x+3}}{\frac{x+1}{x+3}+\frac{1}{x-3}-\frac{2}{x^{2}-9}}
Since \frac{x+3}{x+3} and \frac{5}{x+3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-2}{x+3}}{\frac{x+1}{x+3}+\frac{1}{x-3}-\frac{2}{x^{2}-9}}
Combine like terms in x+3-5.
\frac{\frac{x-2}{x+3}}{\frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x+3}{\left(x-3\right)\left(x+3\right)}-\frac{2}{x^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and x-3 is \left(x-3\right)\left(x+3\right). Multiply \frac{x+1}{x+3} times \frac{x-3}{x-3}. Multiply \frac{1}{x-3} times \frac{x+3}{x+3}.
\frac{\frac{x-2}{x+3}}{\frac{\left(x+1\right)\left(x-3\right)+x+3}{\left(x-3\right)\left(x+3\right)}-\frac{2}{x^{2}-9}}
Since \frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{x+3}{\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x-2}{x+3}}{\frac{x^{2}-3x+x-3+x+3}{\left(x-3\right)\left(x+3\right)}-\frac{2}{x^{2}-9}}
Do the multiplications in \left(x+1\right)\left(x-3\right)+x+3.
\frac{\frac{x-2}{x+3}}{\frac{x^{2}-x}{\left(x-3\right)\left(x+3\right)}-\frac{2}{x^{2}-9}}
Combine like terms in x^{2}-3x+x-3+x+3.
\frac{\frac{x-2}{x+3}}{\frac{x^{2}-x}{\left(x-3\right)\left(x+3\right)}-\frac{2}{\left(x-3\right)\left(x+3\right)}}
Factor x^{2}-9.
\frac{\frac{x-2}{x+3}}{\frac{x^{2}-x-2}{\left(x-3\right)\left(x+3\right)}}
Since \frac{x^{2}-x}{\left(x-3\right)\left(x+3\right)} and \frac{2}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-2}{x+3}}{\frac{-2-x+x^{2}}{\left(x-3\right)\left(x+3\right)}}
Combine like terms in x^{2}-x-2.
\frac{\left(x-2\right)\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(-2-x+x^{2}\right)}
Divide \frac{x-2}{x+3} by \frac{-2-x+x^{2}}{\left(x-3\right)\left(x+3\right)} by multiplying \frac{x-2}{x+3} by the reciprocal of \frac{-2-x+x^{2}}{\left(x-3\right)\left(x+3\right)}.
\frac{\left(x-3\right)\left(x-2\right)}{x^{2}-x-2}
Cancel out x+3 in both numerator and denominator.
\frac{\left(x-3\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{x-3}{x+1}
Cancel out x-2 in both numerator and denominator.