Evaluate
-\frac{784}{3375}\approx -0.232296296
Factor
-\frac{784}{3375} = -0.2322962962962963
Share
Copied to clipboard
\frac{8}{125}+\left(-\frac{1}{2}\right)^{3}+\left(-\frac{1}{6}\right)^{3}-3\times \frac{2}{3}\left(-\frac{1}{2}\right)\left(-\frac{1}{6}\right)
Calculate \frac{2}{5} to the power of 3 and get \frac{8}{125}.
\frac{8}{125}-\frac{1}{8}+\left(-\frac{1}{6}\right)^{3}-3\times \frac{2}{3}\left(-\frac{1}{2}\right)\left(-\frac{1}{6}\right)
Calculate -\frac{1}{2} to the power of 3 and get -\frac{1}{8}.
\frac{64}{1000}-\frac{125}{1000}+\left(-\frac{1}{6}\right)^{3}-3\times \frac{2}{3}\left(-\frac{1}{2}\right)\left(-\frac{1}{6}\right)
Least common multiple of 125 and 8 is 1000. Convert \frac{8}{125} and \frac{1}{8} to fractions with denominator 1000.
\frac{64-125}{1000}+\left(-\frac{1}{6}\right)^{3}-3\times \frac{2}{3}\left(-\frac{1}{2}\right)\left(-\frac{1}{6}\right)
Since \frac{64}{1000} and \frac{125}{1000} have the same denominator, subtract them by subtracting their numerators.
-\frac{61}{1000}+\left(-\frac{1}{6}\right)^{3}-3\times \frac{2}{3}\left(-\frac{1}{2}\right)\left(-\frac{1}{6}\right)
Subtract 125 from 64 to get -61.
-\frac{61}{1000}-\frac{1}{216}-3\times \frac{2}{3}\left(-\frac{1}{2}\right)\left(-\frac{1}{6}\right)
Calculate -\frac{1}{6} to the power of 3 and get -\frac{1}{216}.
-\frac{1647}{27000}-\frac{125}{27000}-3\times \frac{2}{3}\left(-\frac{1}{2}\right)\left(-\frac{1}{6}\right)
Least common multiple of 1000 and 216 is 27000. Convert -\frac{61}{1000} and \frac{1}{216} to fractions with denominator 27000.
\frac{-1647-125}{27000}-3\times \frac{2}{3}\left(-\frac{1}{2}\right)\left(-\frac{1}{6}\right)
Since -\frac{1647}{27000} and \frac{125}{27000} have the same denominator, subtract them by subtracting their numerators.
\frac{-1772}{27000}-3\times \frac{2}{3}\left(-\frac{1}{2}\right)\left(-\frac{1}{6}\right)
Subtract 125 from -1647 to get -1772.
-\frac{443}{6750}-3\times \frac{2}{3}\left(-\frac{1}{2}\right)\left(-\frac{1}{6}\right)
Reduce the fraction \frac{-1772}{27000} to lowest terms by extracting and canceling out 4.
-\frac{443}{6750}-2\left(-\frac{1}{2}\right)\left(-\frac{1}{6}\right)
Cancel out 3 and 3.
-\frac{443}{6750}-\left(-\left(-\frac{1}{6}\right)\right)
Cancel out 2 and 2.
-\frac{443}{6750}-\frac{1}{6}
Multiply -1 and -\frac{1}{6} to get \frac{1}{6}.
-\frac{443}{6750}-\frac{1125}{6750}
Least common multiple of 6750 and 6 is 6750. Convert -\frac{443}{6750} and \frac{1}{6} to fractions with denominator 6750.
\frac{-443-1125}{6750}
Since -\frac{443}{6750} and \frac{1125}{6750} have the same denominator, subtract them by subtracting their numerators.
\frac{-1568}{6750}
Subtract 1125 from -443 to get -1568.
-\frac{784}{3375}
Reduce the fraction \frac{-1568}{6750} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}