Evaluate
\frac{\left(3x+5\right)\left(5x+2\right)}{10x\left(4x-1\right)}
Expand
\frac{15x^{2}+31x+10}{10x\left(4x-1\right)}
Graph
Share
Copied to clipboard
\frac{\left(2+5x\right)\left(5+3x\right)}{\left(8x-2\right)\times 5x}
Multiply \frac{2+5x}{8x-2} times \frac{5+3x}{5x} by multiplying numerator times numerator and denominator times denominator.
\frac{10+6x+25x+15x^{2}}{\left(8x-2\right)\times 5x}
Apply the distributive property by multiplying each term of 2+5x by each term of 5+3x.
\frac{10+31x+15x^{2}}{\left(8x-2\right)\times 5x}
Combine 6x and 25x to get 31x.
\frac{10+31x+15x^{2}}{\left(40x-10\right)x}
Use the distributive property to multiply 8x-2 by 5.
\frac{10+31x+15x^{2}}{40x^{2}-10x}
Use the distributive property to multiply 40x-10 by x.
\frac{\left(2+5x\right)\left(5+3x\right)}{\left(8x-2\right)\times 5x}
Multiply \frac{2+5x}{8x-2} times \frac{5+3x}{5x} by multiplying numerator times numerator and denominator times denominator.
\frac{10+6x+25x+15x^{2}}{\left(8x-2\right)\times 5x}
Apply the distributive property by multiplying each term of 2+5x by each term of 5+3x.
\frac{10+31x+15x^{2}}{\left(8x-2\right)\times 5x}
Combine 6x and 25x to get 31x.
\frac{10+31x+15x^{2}}{\left(40x-10\right)x}
Use the distributive property to multiply 8x-2 by 5.
\frac{10+31x+15x^{2}}{40x^{2}-10x}
Use the distributive property to multiply 40x-10 by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}