Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a+3}{\left(a-3\right)\left(a+3\right)}+\frac{a-3}{\left(a-3\right)\left(a+3\right)}}{\frac{1}{a^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-3 and a+3 is \left(a-3\right)\left(a+3\right). Multiply \frac{1}{a-3} times \frac{a+3}{a+3}. Multiply \frac{1}{a+3} times \frac{a-3}{a-3}.
\frac{\frac{a+3+a-3}{\left(a-3\right)\left(a+3\right)}}{\frac{1}{a^{2}-9}}
Since \frac{a+3}{\left(a-3\right)\left(a+3\right)} and \frac{a-3}{\left(a-3\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2a}{\left(a-3\right)\left(a+3\right)}}{\frac{1}{a^{2}-9}}
Combine like terms in a+3+a-3.
\frac{2a\left(a^{2}-9\right)}{\left(a-3\right)\left(a+3\right)}
Divide \frac{2a}{\left(a-3\right)\left(a+3\right)} by \frac{1}{a^{2}-9} by multiplying \frac{2a}{\left(a-3\right)\left(a+3\right)} by the reciprocal of \frac{1}{a^{2}-9}.
\frac{2a\left(a-3\right)\left(a+3\right)}{\left(a-3\right)\left(a+3\right)}
Factor the expressions that are not already factored.
2a
Cancel out \left(a-3\right)\left(a+3\right) in both numerator and denominator.
\frac{\frac{a+3}{\left(a-3\right)\left(a+3\right)}+\frac{a-3}{\left(a-3\right)\left(a+3\right)}}{\frac{1}{a^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-3 and a+3 is \left(a-3\right)\left(a+3\right). Multiply \frac{1}{a-3} times \frac{a+3}{a+3}. Multiply \frac{1}{a+3} times \frac{a-3}{a-3}.
\frac{\frac{a+3+a-3}{\left(a-3\right)\left(a+3\right)}}{\frac{1}{a^{2}-9}}
Since \frac{a+3}{\left(a-3\right)\left(a+3\right)} and \frac{a-3}{\left(a-3\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2a}{\left(a-3\right)\left(a+3\right)}}{\frac{1}{a^{2}-9}}
Combine like terms in a+3+a-3.
\frac{2a\left(a^{2}-9\right)}{\left(a-3\right)\left(a+3\right)}
Divide \frac{2a}{\left(a-3\right)\left(a+3\right)} by \frac{1}{a^{2}-9} by multiplying \frac{2a}{\left(a-3\right)\left(a+3\right)} by the reciprocal of \frac{1}{a^{2}-9}.
\frac{2a\left(a-3\right)\left(a+3\right)}{\left(a-3\right)\left(a+3\right)}
Factor the expressions that are not already factored.
2a
Cancel out \left(a-3\right)\left(a+3\right) in both numerator and denominator.