Evaluate
2+\frac{1}{x}
Differentiate w.r.t. x
-\frac{1}{x^{2}}
Graph
Share
Copied to clipboard
\frac{1^{2}}{\left(\sqrt{x}\right)^{2}}+2
To raise \frac{1}{\sqrt{x}} to a power, raise both numerator and denominator to the power and then divide.
\frac{1^{2}}{\left(\sqrt{x}\right)^{2}}+\frac{2\left(\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{\left(\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}}.
\frac{1^{2}+2\left(\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}}
Since \frac{1^{2}}{\left(\sqrt{x}\right)^{2}} and \frac{2\left(\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{1}{\left(\sqrt{x}\right)^{2}}+2
Calculate 1 to the power of 2 and get 1.
\frac{1}{x}+2
Calculate \sqrt{x} to the power of 2 and get x.
\frac{1}{x}+\frac{2x}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x}{x}.
\frac{1+2x}{x}
Since \frac{1}{x} and \frac{2x}{x} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1^{2}}{\left(\sqrt{x}\right)^{2}}+2)
To raise \frac{1}{\sqrt{x}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1^{2}}{\left(\sqrt{x}\right)^{2}}+\frac{2\left(\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{\left(\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1^{2}+2\left(\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}})
Since \frac{1^{2}}{\left(\sqrt{x}\right)^{2}} and \frac{2\left(\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+2\left(\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}})
Calculate 1 to the power of 2 and get 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+2x}{\left(\sqrt{x}\right)^{2}})
Calculate \sqrt{x} to the power of 2 and get x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+2x}{x})
Calculate \sqrt{x} to the power of 2 and get x.
\left(2x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x})+\frac{1}{x}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+1)
For any two differentiable functions, the derivative of the product of two functions is the first function times the derivative of the second plus the second function times the derivative of the first.
\left(2x^{1}+1\right)\left(-1\right)x^{-1-1}+\frac{1}{x}\times 2x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(2x^{1}+1\right)\left(-1\right)x^{-2}+\frac{1}{x}\times 2x^{0}
Simplify.
2x^{1}\left(-1\right)x^{-2}-x^{-2}+\frac{1}{x}\times 2x^{0}
Multiply 2x^{1}+1 times -x^{-2}.
-2x^{1-2}-x^{-2}+2\times \frac{1}{x}
To multiply powers of the same base, add their exponents.
-2\times \frac{1}{x}-x^{-2}+2\times \frac{1}{x}
Simplify.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1^{2}}{\left(\sqrt{x}\right)^{2}}+2)
To raise \frac{1}{\sqrt{x}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1^{2}}{\left(\sqrt{x}\right)^{2}}+\frac{2\left(\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{\left(\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1^{2}+2\left(\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}})
Since \frac{1^{2}}{\left(\sqrt{x}\right)^{2}} and \frac{2\left(\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+2\left(\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}})
Calculate 1 to the power of 2 and get 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+2x}{\left(\sqrt{x}\right)^{2}})
Calculate \sqrt{x} to the power of 2 and get x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1+2x}{x})
Calculate \sqrt{x} to the power of 2 and get x.
\frac{x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+1)-\left(2x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})}{\left(x^{1}\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{x^{1}\times 2x^{1-1}-\left(2x^{1}+1\right)x^{1-1}}{\left(x^{1}\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{x^{1}\times 2x^{0}-\left(2x^{1}+1\right)x^{0}}{\left(x^{1}\right)^{2}}
Do the arithmetic.
\frac{x^{1}\times 2x^{0}-\left(2x^{1}x^{0}+x^{0}\right)}{\left(x^{1}\right)^{2}}
Expand using distributive property.
\frac{2x^{1}-\left(2x^{1}+x^{0}\right)}{\left(x^{1}\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{2x^{1}-2x^{1}-x^{0}}{\left(x^{1}\right)^{2}}
Remove unnecessary parentheses.
\frac{\left(2-2\right)x^{1}-x^{0}}{\left(x^{1}\right)^{2}}
Combine like terms.
-\frac{x^{0}}{\left(x^{1}\right)^{2}}
Subtract 2 from 2.
-\frac{x^{0}}{1^{2}x^{2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
-\frac{x^{0}}{x^{2}}
Raise 1 to the power 2.
\frac{-x^{0}}{x^{2}}
Multiply 1 times 2.
\left(-\frac{1}{1}\right)x^{-2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
-x^{-2}
Do the arithmetic.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}