Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=11 ab=10
To solve the equation, factor x^{2}+11x+10 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,10 2,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 10.
1+10=11 2+5=7
Calculate the sum for each pair.
a=1 b=10
The solution is the pair that gives sum 11.
\left(x+1\right)\left(x+10\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=-1 x=-10
To find equation solutions, solve x+1=0 and x+10=0.
a+b=11 ab=1\times 10=10
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+10. To find a and b, set up a system to be solved.
1,10 2,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 10.
1+10=11 2+5=7
Calculate the sum for each pair.
a=1 b=10
The solution is the pair that gives sum 11.
\left(x^{2}+x\right)+\left(10x+10\right)
Rewrite x^{2}+11x+10 as \left(x^{2}+x\right)+\left(10x+10\right).
x\left(x+1\right)+10\left(x+1\right)
Factor out x in the first and 10 in the second group.
\left(x+1\right)\left(x+10\right)
Factor out common term x+1 by using distributive property.
x=-1 x=-10
To find equation solutions, solve x+1=0 and x+10=0.
x^{2}+11x+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{11^{2}-4\times 10}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 11 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 10}}{2}
Square 11.
x=\frac{-11±\sqrt{121-40}}{2}
Multiply -4 times 10.
x=\frac{-11±\sqrt{81}}{2}
Add 121 to -40.
x=\frac{-11±9}{2}
Take the square root of 81.
x=-\frac{2}{2}
Now solve the equation x=\frac{-11±9}{2} when ± is plus. Add -11 to 9.
x=-1
Divide -2 by 2.
x=-\frac{20}{2}
Now solve the equation x=\frac{-11±9}{2} when ± is minus. Subtract 9 from -11.
x=-10
Divide -20 by 2.
x=-1 x=-10
The equation is now solved.
x^{2}+11x+10=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+11x+10-10=-10
Subtract 10 from both sides of the equation.
x^{2}+11x=-10
Subtracting 10 from itself leaves 0.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-10+\left(\frac{11}{2}\right)^{2}
Divide 11, the coefficient of the x term, by 2 to get \frac{11}{2}. Then add the square of \frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+11x+\frac{121}{4}=-10+\frac{121}{4}
Square \frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+11x+\frac{121}{4}=\frac{81}{4}
Add -10 to \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{81}{4}
Factor x^{2}+11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
x+\frac{11}{2}=\frac{9}{2} x+\frac{11}{2}=-\frac{9}{2}
Simplify.
x=-1 x=-10
Subtract \frac{11}{2} from both sides of the equation.