Differentiate w.r.t. a
\frac{3\left(96\left(\sin(a)\right)^{2}\left(\cos(a)\right)^{10}+96\left(\cos(a)\right)^{2}\left(\sin(a)\right)^{10}+240\left(\sin(a)\right)^{4}\left(\cos(a)\right)^{8}+240\left(\cos(a)\right)^{4}\left(\sin(a)\right)^{8}+16\left(\sin(a)\right)^{12}+16\left(\cos(a)\right)^{12}+5\left(\sin(2a)\right)^{6}\right)}{8\left(\left(-3\sin(a)\left(\cos(a)\right)^{2}-3\cos(a)\left(\sin(a)\right)^{2}+\left(\sin(a)\right)^{3}+\left(\cos(a)\right)^{3}\right)\left(3\sin(a)\left(\cos(a)\right)^{2}-3\cos(a)\left(\sin(a)\right)^{2}+\left(\cos(a)\right)^{3}-\left(\sin(a)\right)^{3}\right)\right)^{2}}
Evaluate
\tan(6a)
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}a}(\tan(6a))
Multiply 3 and 2 to get 6.
\left(\sec(6a^{1})\right)^{2}\frac{\mathrm{d}}{\mathrm{d}a}(6a^{1})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\left(\sec(6a^{1})\right)^{2}\times 6a^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
6\left(\sec(6a^{1})\right)^{2}
Simplify.
6\left(\sec(6a)\right)^{2}
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}