Evaluate
\frac{\sqrt{1198}}{5}\approx 6.92242732
Share
Copied to clipboard
\sqrt{5.99\times \frac{240}{12}\left(\frac{1}{5}+\frac{1}{5}\right)}
Multiply 15 and 16 to get 240.
\sqrt{5.99\times 20\left(\frac{1}{5}+\frac{1}{5}\right)}
Divide 240 by 12 to get 20.
\sqrt{119.8\left(\frac{1}{5}+\frac{1}{5}\right)}
Multiply 5.99 and 20 to get 119.8.
\sqrt{119.8\times \frac{1+1}{5}}
Since \frac{1}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
\sqrt{119.8\times \frac{2}{5}}
Add 1 and 1 to get 2.
\sqrt{\frac{599}{5}\times \frac{2}{5}}
Convert decimal number 119.8 to fraction \frac{1198}{10}. Reduce the fraction \frac{1198}{10} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{599\times 2}{5\times 5}}
Multiply \frac{599}{5} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{1198}{25}}
Do the multiplications in the fraction \frac{599\times 2}{5\times 5}.
\frac{\sqrt{1198}}{\sqrt{25}}
Rewrite the square root of the division \sqrt{\frac{1198}{25}} as the division of square roots \frac{\sqrt{1198}}{\sqrt{25}}.
\frac{\sqrt{1198}}{5}
Calculate the square root of 25 and get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}