Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{2}\left(-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+i\times \frac{1}{\sqrt{2}}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{2}\left(-\frac{\sqrt{2}}{2}+i\times \frac{1}{\sqrt{2}}\right)
The square of \sqrt{2} is 2.
\sqrt{2}\left(-\frac{\sqrt{2}}{2}+i\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{2}\left(-\frac{\sqrt{2}}{2}+i\times \frac{\sqrt{2}}{2}\right)
The square of \sqrt{2} is 2.
\sqrt{2}\left(-\frac{\sqrt{2}}{2}\right)+i\sqrt{2}\times \frac{\sqrt{2}}{2}
Use the distributive property to multiply \sqrt{2} by -\frac{\sqrt{2}}{2}+i\times \frac{\sqrt{2}}{2}.
\frac{-\sqrt{2}\sqrt{2}}{2}+i\sqrt{2}\times \frac{\sqrt{2}}{2}
Express \sqrt{2}\left(-\frac{\sqrt{2}}{2}\right) as a single fraction.
\frac{-\sqrt{2}\sqrt{2}}{2}+i\times \frac{\sqrt{2}\sqrt{2}}{2}
Express \sqrt{2}\times \frac{\sqrt{2}}{2} as a single fraction.
\frac{-2}{2}+i\times \frac{\sqrt{2}\sqrt{2}}{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{-2}{2}+i\times \frac{2}{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{-2}{2}+i
Divide 2 by 2 to get 1.
-1+i
Cancel out 2 and 2.
Re(\sqrt{2}\left(-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+i\times \frac{1}{\sqrt{2}}\right))
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
Re(\sqrt{2}\left(-\frac{\sqrt{2}}{2}+i\times \frac{1}{\sqrt{2}}\right))
The square of \sqrt{2} is 2.
Re(\sqrt{2}\left(-\frac{\sqrt{2}}{2}+i\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right))
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
Re(\sqrt{2}\left(-\frac{\sqrt{2}}{2}+i\times \frac{\sqrt{2}}{2}\right))
The square of \sqrt{2} is 2.
Re(\sqrt{2}\left(-\frac{\sqrt{2}}{2}\right)+i\sqrt{2}\times \frac{\sqrt{2}}{2})
Use the distributive property to multiply \sqrt{2} by -\frac{\sqrt{2}}{2}+i\times \frac{\sqrt{2}}{2}.
Re(\frac{-\sqrt{2}\sqrt{2}}{2}+i\sqrt{2}\times \frac{\sqrt{2}}{2})
Express \sqrt{2}\left(-\frac{\sqrt{2}}{2}\right) as a single fraction.
Re(\frac{-\sqrt{2}\sqrt{2}}{2}+i\times \frac{\sqrt{2}\sqrt{2}}{2})
Express \sqrt{2}\times \frac{\sqrt{2}}{2} as a single fraction.
Re(\frac{-2}{2}+i\times \frac{\sqrt{2}\sqrt{2}}{2})
Multiply \sqrt{2} and \sqrt{2} to get 2.
Re(\frac{-2}{2}+i\times \frac{2}{2})
Multiply \sqrt{2} and \sqrt{2} to get 2.
Re(\frac{-2}{2}+i)
Divide 2 by 2 to get 1.
Re(-1+i)
Cancel out 2 and 2.
-1
The real part of -1+i is -1.