Evaluate
-1+i
Real Part
-1
Share
Copied to clipboard
\sqrt{2}\left(-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+i\times \frac{1}{\sqrt{2}}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{2}\left(-\frac{\sqrt{2}}{2}+i\times \frac{1}{\sqrt{2}}\right)
The square of \sqrt{2} is 2.
\sqrt{2}\left(-\frac{\sqrt{2}}{2}+i\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{2}\left(-\frac{\sqrt{2}}{2}+i\times \frac{\sqrt{2}}{2}\right)
The square of \sqrt{2} is 2.
\sqrt{2}\left(-\frac{\sqrt{2}}{2}\right)+i\sqrt{2}\times \frac{\sqrt{2}}{2}
Use the distributive property to multiply \sqrt{2} by -\frac{\sqrt{2}}{2}+i\times \frac{\sqrt{2}}{2}.
\frac{-\sqrt{2}\sqrt{2}}{2}+i\sqrt{2}\times \frac{\sqrt{2}}{2}
Express \sqrt{2}\left(-\frac{\sqrt{2}}{2}\right) as a single fraction.
\frac{-\sqrt{2}\sqrt{2}}{2}+i\times \frac{\sqrt{2}\sqrt{2}}{2}
Express \sqrt{2}\times \frac{\sqrt{2}}{2} as a single fraction.
\frac{-2}{2}+i\times \frac{\sqrt{2}\sqrt{2}}{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{-2}{2}+i\times \frac{2}{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{-2}{2}+i
Divide 2 by 2 to get 1.
-1+i
Cancel out 2 and 2.
Re(\sqrt{2}\left(-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+i\times \frac{1}{\sqrt{2}}\right))
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
Re(\sqrt{2}\left(-\frac{\sqrt{2}}{2}+i\times \frac{1}{\sqrt{2}}\right))
The square of \sqrt{2} is 2.
Re(\sqrt{2}\left(-\frac{\sqrt{2}}{2}+i\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right))
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
Re(\sqrt{2}\left(-\frac{\sqrt{2}}{2}+i\times \frac{\sqrt{2}}{2}\right))
The square of \sqrt{2} is 2.
Re(\sqrt{2}\left(-\frac{\sqrt{2}}{2}\right)+i\sqrt{2}\times \frac{\sqrt{2}}{2})
Use the distributive property to multiply \sqrt{2} by -\frac{\sqrt{2}}{2}+i\times \frac{\sqrt{2}}{2}.
Re(\frac{-\sqrt{2}\sqrt{2}}{2}+i\sqrt{2}\times \frac{\sqrt{2}}{2})
Express \sqrt{2}\left(-\frac{\sqrt{2}}{2}\right) as a single fraction.
Re(\frac{-\sqrt{2}\sqrt{2}}{2}+i\times \frac{\sqrt{2}\sqrt{2}}{2})
Express \sqrt{2}\times \frac{\sqrt{2}}{2} as a single fraction.
Re(\frac{-2}{2}+i\times \frac{\sqrt{2}\sqrt{2}}{2})
Multiply \sqrt{2} and \sqrt{2} to get 2.
Re(\frac{-2}{2}+i\times \frac{2}{2})
Multiply \sqrt{2} and \sqrt{2} to get 2.
Re(\frac{-2}{2}+i)
Divide 2 by 2 to get 1.
Re(-1+i)
Cancel out 2 and 2.
-1
The real part of -1+i is -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}