Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\left(-3+3\sqrt{3}\right)^{2}+\left(-3-3\sqrt{3}\right)^{2}}
The opposite of -3\sqrt{3} is 3\sqrt{3}.
\sqrt{9-18\sqrt{3}+9\left(\sqrt{3}\right)^{2}+\left(-3-3\sqrt{3}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-3+3\sqrt{3}\right)^{2}.
\sqrt{9-18\sqrt{3}+9\times 3+\left(-3-3\sqrt{3}\right)^{2}}
The square of \sqrt{3} is 3.
\sqrt{9-18\sqrt{3}+27+\left(-3-3\sqrt{3}\right)^{2}}
Multiply 9 and 3 to get 27.
\sqrt{36-18\sqrt{3}+\left(-3-3\sqrt{3}\right)^{2}}
Add 9 and 27 to get 36.
\sqrt{36-18\sqrt{3}+9+18\sqrt{3}+9\left(\sqrt{3}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-3-3\sqrt{3}\right)^{2}.
\sqrt{36-18\sqrt{3}+9+18\sqrt{3}+9\times 3}
The square of \sqrt{3} is 3.
\sqrt{36-18\sqrt{3}+9+18\sqrt{3}+27}
Multiply 9 and 3 to get 27.
\sqrt{36-18\sqrt{3}+36+18\sqrt{3}}
Add 9 and 27 to get 36.
\sqrt{72-18\sqrt{3}+18\sqrt{3}}
Add 36 and 36 to get 72.
\sqrt{72}
Combine -18\sqrt{3} and 18\sqrt{3} to get 0.
6\sqrt{2}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.