Evaluate
\frac{13\sqrt{2}}{4}+\frac{25}{8}\approx 7.721194078
Factor
\frac{26 \sqrt{2} + 25}{8} = 7.72119407771256
Share
Copied to clipboard
\sqrt{\frac{\left(13\sqrt{2}\right)^{2}}{4^{2}}}+\left(\frac{5\sqrt{2}}{4}\right)^{2}
To raise \frac{13\sqrt{2}}{4} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{\frac{\left(13\sqrt{2}\right)^{2}}{4^{2}}}+\frac{\left(5\sqrt{2}\right)^{2}}{4^{2}}
To raise \frac{5\sqrt{2}}{4} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{\frac{13^{2}\left(\sqrt{2}\right)^{2}}{4^{2}}}+\frac{\left(5\sqrt{2}\right)^{2}}{4^{2}}
Expand \left(13\sqrt{2}\right)^{2}.
\sqrt{\frac{169\left(\sqrt{2}\right)^{2}}{4^{2}}}+\frac{\left(5\sqrt{2}\right)^{2}}{4^{2}}
Calculate 13 to the power of 2 and get 169.
\sqrt{\frac{169\times 2}{4^{2}}}+\frac{\left(5\sqrt{2}\right)^{2}}{4^{2}}
The square of \sqrt{2} is 2.
\sqrt{\frac{338}{4^{2}}}+\frac{\left(5\sqrt{2}\right)^{2}}{4^{2}}
Multiply 169 and 2 to get 338.
\sqrt{\frac{338}{16}}+\frac{\left(5\sqrt{2}\right)^{2}}{4^{2}}
Calculate 4 to the power of 2 and get 16.
\sqrt{\frac{169}{8}}+\frac{\left(5\sqrt{2}\right)^{2}}{4^{2}}
Reduce the fraction \frac{338}{16} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{169}}{\sqrt{8}}+\frac{\left(5\sqrt{2}\right)^{2}}{4^{2}}
Rewrite the square root of the division \sqrt{\frac{169}{8}} as the division of square roots \frac{\sqrt{169}}{\sqrt{8}}.
\frac{13}{\sqrt{8}}+\frac{\left(5\sqrt{2}\right)^{2}}{4^{2}}
Calculate the square root of 169 and get 13.
\frac{13}{2\sqrt{2}}+\frac{\left(5\sqrt{2}\right)^{2}}{4^{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{13\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+\frac{\left(5\sqrt{2}\right)^{2}}{4^{2}}
Rationalize the denominator of \frac{13}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{13\sqrt{2}}{2\times 2}+\frac{\left(5\sqrt{2}\right)^{2}}{4^{2}}
The square of \sqrt{2} is 2.
\frac{13\sqrt{2}}{4}+\frac{\left(5\sqrt{2}\right)^{2}}{4^{2}}
Multiply 2 and 2 to get 4.
\frac{13\sqrt{2}}{4}+\frac{5^{2}\left(\sqrt{2}\right)^{2}}{4^{2}}
Expand \left(5\sqrt{2}\right)^{2}.
\frac{13\sqrt{2}}{4}+\frac{25\left(\sqrt{2}\right)^{2}}{4^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{13\sqrt{2}}{4}+\frac{25\times 2}{4^{2}}
The square of \sqrt{2} is 2.
\frac{13\sqrt{2}}{4}+\frac{50}{4^{2}}
Multiply 25 and 2 to get 50.
\frac{13\sqrt{2}}{4}+\frac{50}{16}
Calculate 4 to the power of 2 and get 16.
\frac{13\sqrt{2}}{4}+\frac{25}{8}
Reduce the fraction \frac{50}{16} to lowest terms by extracting and canceling out 2.
\frac{2\times 13\sqrt{2}}{8}+\frac{25}{8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 8 is 8. Multiply \frac{13\sqrt{2}}{4} times \frac{2}{2}.
\frac{2\times 13\sqrt{2}+25}{8}
Since \frac{2\times 13\sqrt{2}}{8} and \frac{25}{8} have the same denominator, add them by adding their numerators.
\frac{26\sqrt{2}+25}{8}
Do the multiplications in 2\times 13\sqrt{2}+25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}