Evaluate
\frac{12\sqrt{2633345}}{18415}\approx 1.057458672
Quiz
Arithmetic
5 problems similar to:
= \sqrt { \frac { 660 } { 635 } \times \frac { 1560 } { 1450 } }
Share
Copied to clipboard
\sqrt{\frac{132}{127}\times \frac{1560}{1450}}
Reduce the fraction \frac{660}{635} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{132}{127}\times \frac{156}{145}}
Reduce the fraction \frac{1560}{1450} to lowest terms by extracting and canceling out 10.
\sqrt{\frac{132\times 156}{127\times 145}}
Multiply \frac{132}{127} times \frac{156}{145} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{20592}{18415}}
Do the multiplications in the fraction \frac{132\times 156}{127\times 145}.
\frac{\sqrt{20592}}{\sqrt{18415}}
Rewrite the square root of the division \sqrt{\frac{20592}{18415}} as the division of square roots \frac{\sqrt{20592}}{\sqrt{18415}}.
\frac{12\sqrt{143}}{\sqrt{18415}}
Factor 20592=12^{2}\times 143. Rewrite the square root of the product \sqrt{12^{2}\times 143} as the product of square roots \sqrt{12^{2}}\sqrt{143}. Take the square root of 12^{2}.
\frac{12\sqrt{143}\sqrt{18415}}{\left(\sqrt{18415}\right)^{2}}
Rationalize the denominator of \frac{12\sqrt{143}}{\sqrt{18415}} by multiplying numerator and denominator by \sqrt{18415}.
\frac{12\sqrt{143}\sqrt{18415}}{18415}
The square of \sqrt{18415} is 18415.
\frac{12\sqrt{2633345}}{18415}
To multiply \sqrt{143} and \sqrt{18415}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}