Evaluate
\frac{6}{5}=1.2
Factor
\frac{2 \cdot 3}{5} = 1\frac{1}{5} = 1.2
Share
Copied to clipboard
\sqrt{\frac{6}{25}\left(\frac{\left(\frac{3}{2}+\frac{2}{3}+2\right)\times 3-\frac{1}{4}}{\frac{7}{3}-\frac{1}{2}\times \frac{7}{5}}-\frac{3}{2}\right)}
Calculate 5 to the power of 2 and get 25.
\sqrt{\frac{6}{25}\left(\frac{\left(\frac{9}{6}+\frac{4}{6}+2\right)\times 3-\frac{1}{4}}{\frac{7}{3}-\frac{1}{2}\times \frac{7}{5}}-\frac{3}{2}\right)}
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{2}{3} to fractions with denominator 6.
\sqrt{\frac{6}{25}\left(\frac{\left(\frac{9+4}{6}+2\right)\times 3-\frac{1}{4}}{\frac{7}{3}-\frac{1}{2}\times \frac{7}{5}}-\frac{3}{2}\right)}
Since \frac{9}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
\sqrt{\frac{6}{25}\left(\frac{\left(\frac{13}{6}+2\right)\times 3-\frac{1}{4}}{\frac{7}{3}-\frac{1}{2}\times \frac{7}{5}}-\frac{3}{2}\right)}
Add 9 and 4 to get 13.
\sqrt{\frac{6}{25}\left(\frac{\left(\frac{13}{6}+\frac{12}{6}\right)\times 3-\frac{1}{4}}{\frac{7}{3}-\frac{1}{2}\times \frac{7}{5}}-\frac{3}{2}\right)}
Convert 2 to fraction \frac{12}{6}.
\sqrt{\frac{6}{25}\left(\frac{\frac{13+12}{6}\times 3-\frac{1}{4}}{\frac{7}{3}-\frac{1}{2}\times \frac{7}{5}}-\frac{3}{2}\right)}
Since \frac{13}{6} and \frac{12}{6} have the same denominator, add them by adding their numerators.
\sqrt{\frac{6}{25}\left(\frac{\frac{25}{6}\times 3-\frac{1}{4}}{\frac{7}{3}-\frac{1}{2}\times \frac{7}{5}}-\frac{3}{2}\right)}
Add 13 and 12 to get 25.
\sqrt{\frac{6}{25}\left(\frac{\frac{25\times 3}{6}-\frac{1}{4}}{\frac{7}{3}-\frac{1}{2}\times \frac{7}{5}}-\frac{3}{2}\right)}
Express \frac{25}{6}\times 3 as a single fraction.
\sqrt{\frac{6}{25}\left(\frac{\frac{75}{6}-\frac{1}{4}}{\frac{7}{3}-\frac{1}{2}\times \frac{7}{5}}-\frac{3}{2}\right)}
Multiply 25 and 3 to get 75.
\sqrt{\frac{6}{25}\left(\frac{\frac{25}{2}-\frac{1}{4}}{\frac{7}{3}-\frac{1}{2}\times \frac{7}{5}}-\frac{3}{2}\right)}
Reduce the fraction \frac{75}{6} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{6}{25}\left(\frac{\frac{50}{4}-\frac{1}{4}}{\frac{7}{3}-\frac{1}{2}\times \frac{7}{5}}-\frac{3}{2}\right)}
Least common multiple of 2 and 4 is 4. Convert \frac{25}{2} and \frac{1}{4} to fractions with denominator 4.
\sqrt{\frac{6}{25}\left(\frac{\frac{50-1}{4}}{\frac{7}{3}-\frac{1}{2}\times \frac{7}{5}}-\frac{3}{2}\right)}
Since \frac{50}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{6}{25}\left(\frac{\frac{49}{4}}{\frac{7}{3}-\frac{1}{2}\times \frac{7}{5}}-\frac{3}{2}\right)}
Subtract 1 from 50 to get 49.
\sqrt{\frac{6}{25}\left(\frac{\frac{49}{4}}{\frac{7}{3}-\frac{1\times 7}{2\times 5}}-\frac{3}{2}\right)}
Multiply \frac{1}{2} times \frac{7}{5} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{6}{25}\left(\frac{\frac{49}{4}}{\frac{7}{3}-\frac{7}{10}}-\frac{3}{2}\right)}
Do the multiplications in the fraction \frac{1\times 7}{2\times 5}.
\sqrt{\frac{6}{25}\left(\frac{\frac{49}{4}}{\frac{70}{30}-\frac{21}{30}}-\frac{3}{2}\right)}
Least common multiple of 3 and 10 is 30. Convert \frac{7}{3} and \frac{7}{10} to fractions with denominator 30.
\sqrt{\frac{6}{25}\left(\frac{\frac{49}{4}}{\frac{70-21}{30}}-\frac{3}{2}\right)}
Since \frac{70}{30} and \frac{21}{30} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{6}{25}\left(\frac{\frac{49}{4}}{\frac{49}{30}}-\frac{3}{2}\right)}
Subtract 21 from 70 to get 49.
\sqrt{\frac{6}{25}\left(\frac{49}{4}\times \frac{30}{49}-\frac{3}{2}\right)}
Divide \frac{49}{4} by \frac{49}{30} by multiplying \frac{49}{4} by the reciprocal of \frac{49}{30}.
\sqrt{\frac{6}{25}\left(\frac{49\times 30}{4\times 49}-\frac{3}{2}\right)}
Multiply \frac{49}{4} times \frac{30}{49} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{6}{25}\left(\frac{30}{4}-\frac{3}{2}\right)}
Cancel out 49 in both numerator and denominator.
\sqrt{\frac{6}{25}\left(\frac{15}{2}-\frac{3}{2}\right)}
Reduce the fraction \frac{30}{4} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{6}{25}\times \frac{15-3}{2}}
Since \frac{15}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{6}{25}\times \frac{12}{2}}
Subtract 3 from 15 to get 12.
\sqrt{\frac{6}{25}\times 6}
Divide 12 by 2 to get 6.
\sqrt{\frac{6\times 6}{25}}
Express \frac{6}{25}\times 6 as a single fraction.
\sqrt{\frac{36}{25}}
Multiply 6 and 6 to get 36.
\frac{6}{5}
Rewrite the square root of the division \frac{36}{25} as the division of square roots \frac{\sqrt{36}}{\sqrt{25}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}