Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{2}}{\sqrt{5}}+3\sqrt{5}-4\sqrt{5}
Rewrite the square root of the division \sqrt{\frac{2}{5}} as the division of square roots \frac{\sqrt{2}}{\sqrt{5}}.
\frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}+3\sqrt{5}-4\sqrt{5}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{2}\sqrt{5}}{5}+3\sqrt{5}-4\sqrt{5}
The square of \sqrt{5} is 5.
\frac{\sqrt{10}}{5}+3\sqrt{5}-4\sqrt{5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{10}}{5}-\sqrt{5}
Combine 3\sqrt{5} and -4\sqrt{5} to get -\sqrt{5}.
\frac{\sqrt{10}}{5}-\frac{5\sqrt{5}}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{5} times \frac{5}{5}.
\frac{\sqrt{10}-5\sqrt{5}}{5}
Since \frac{\sqrt{10}}{5} and \frac{5\sqrt{5}}{5} have the same denominator, subtract them by subtracting their numerators.