Solve for l (complex solution)
l\in \mathrm{C}
Solve for r (complex solution)
r\in \mathrm{C}
Solve for l
l\in \mathrm{R}
Solve for r
r\in \mathrm{R}
Share
Copied to clipboard
\pi rl+\pi r^{2}=\pi rl+\pi r^{2}
Use the distributive property to multiply \pi r by l+r.
\pi rl+\pi r^{2}-\pi rl=\pi r^{2}
Subtract \pi rl from both sides.
\pi r^{2}=\pi r^{2}
Combine \pi rl and -\pi rl to get 0.
r^{2}=r^{2}
Cancel out \pi on both sides.
\text{true}
Reorder the terms.
l\in \mathrm{C}
This is true for any l.
\pi rl+\pi r^{2}=\pi rl+\pi r^{2}
Use the distributive property to multiply \pi r by l+r.
\pi rl+\pi r^{2}-\pi rl=\pi r^{2}
Subtract \pi rl from both sides.
\pi r^{2}=\pi r^{2}
Combine \pi rl and -\pi rl to get 0.
\pi r^{2}-\pi r^{2}=0
Subtract \pi r^{2} from both sides.
0=0
Combine \pi r^{2} and -\pi r^{2} to get 0.
\text{true}
Compare 0 and 0.
r\in \mathrm{C}
This is true for any r.
\pi rl+\pi r^{2}=\pi rl+\pi r^{2}
Use the distributive property to multiply \pi r by l+r.
\pi rl+\pi r^{2}-\pi rl=\pi r^{2}
Subtract \pi rl from both sides.
\pi r^{2}=\pi r^{2}
Combine \pi rl and -\pi rl to get 0.
r^{2}=r^{2}
Cancel out \pi on both sides.
\text{true}
Reorder the terms.
l\in \mathrm{R}
This is true for any l.
\pi rl+\pi r^{2}=\pi rl+\pi r^{2}
Use the distributive property to multiply \pi r by l+r.
\pi rl+\pi r^{2}-\pi rl=\pi r^{2}
Subtract \pi rl from both sides.
\pi r^{2}=\pi r^{2}
Combine \pi rl and -\pi rl to get 0.
\pi r^{2}-\pi r^{2}=0
Subtract \pi r^{2} from both sides.
0=0
Combine \pi r^{2} and -\pi r^{2} to get 0.
\text{true}
Compare 0 and 0.
r\in \mathrm{R}
This is true for any r.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}