Skip to main content
Evaluate
Tick mark Image

Share

\int _{0}^{4}-5\times 2.5+40x\mathrm{d}x
Multiply -1 and 5 to get -5.
\int _{0}^{4}-12.5+40x\mathrm{d}x
Multiply -5 and 2.5 to get -12.5.
\int -12.5+40x\mathrm{d}x
Evaluate the indefinite integral first.
\int -12.5\mathrm{d}x+\int 40x\mathrm{d}x
Integrate the sum term by term.
\int -12.5\mathrm{d}x+40\int x\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{25x}{2}+40\int x\mathrm{d}x
Find the integral of -12.5 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{25x}{2}+20x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 40 times \frac{x^{2}}{2}.
-12.5\times 4+20\times 4^{2}-\left(-12.5\times 0+20\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
270
Simplify.